Folia Parasitologica, vol. 61 (2014), issue 6

Folia Parasitologica 61[6] 561-570 (2014) | 10.14411/fp.2014.068

Moxidectin causes adult worm mortality of human lymphatic filarial parasite Brugia malayi in rodent models

Meenakshi Verma1,2, Manisha Pathak1, Mohd Shahab1,2, Kavita Singh3, Kalyan Mitra2,3, Shailja Misra-Bhattacharya1,2
1 Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttarpradesh, India;
2 Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India;
3 Electron Microscopy Unit, CSIR-Central Drug Research Institute, Lucknow, Uttarpradesh, India

Moxidectin is a macrocyclic lactone belonging to milbemycin family closely related to ivermectin and is currently progressing towards Phase III clinical trial against human infection with the filaria Onchocerca volvulus (Leuckart, 1894). There is a single report on the microfilaricidal and embryostatic activity of moxidectin in case of the human lymphatic filarial parasite Brugia malayi (Brug, 1927) in Mastomys coucha (Smith) but without any adulticidal action. In the present study, the in vitro and in vivo antifilarial efficacy of moxidectin was evaluated on, B. malayi. In vitro moxidectin showed 100% reduction in adult female worm motility at 0.6 µM concentration within 7 days with 68% inhibition in the reduction of MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye) (which is used to detect viability of worms). A 50% inhibitory concentration (IC50) of moxidectin for adult female parasite was 0.242 µM, for male worm 0.186 µM and for microfilaria IC50 was 0.813 µM. In adult B. malayi-transplanted primary screening model (Meriones unguiculatus Milne-Edwards), moxidectin at a single optimal dose of 20 mg/kg by oral and subcutaneous route was found effective on both adult parasites and microfilariae. In secondary screening (M. coucha, subcutaneously inoculated with infective larvae), moxidectin at the same dose by subcutaneous route brought about death of 49% of adult worms besides causing sterilisation in 54% of the recovered live female worms. The treated animals exhibited a continuous and sustained reduction in peripheral blood microfilaraemia throughout the observation period of 90 days. The mechanism of action of moxidectin is suggested to be similar to avermectins. The in silico studies were also designed to explore the interaction of moxidectin with glutamate-gated chloride channels of B. malayi. The docking results revealed a close interaction of moxidectin with various GluCl ligand sites of B. malayi.

Keywords: Nematode, chemotherapy, macrocyclic lactone, jirds, mastomys, microfilaricidal, macrofilaricidal

Received: April 27, 2014; Accepted: July 21, 2014; Prepublished online: November 24, 2014; Published: December 4, 2014


References

  1. Alvinerie M., Escudero E., Sutra J.F., Eeckhoutte C., Galtier P. 1998: The pharmacokinetics of moxidectin after oral and subcutaneous administration to sheep. Vet. Res. 29: 113-118 Go to PubMed...
  2. Awadzi K., Opoku N.O., Attah S.K., Lazdins-Helds J., Kuesel A.C. 2014: A randomized, single-ascending-dose, ivermectin-controlled, double-blind study of moxidectin in Onchocerca volvulus infection. PLoS Negl. Trop. Dis. 8: e2953 Go to original source... Go to PubMed...
  3. Bajpai P., Srivastava K., Shakya S., Saxena P.N., Misra-Bhattacharya S. 2007: Improvement in the efficacy of existing combination of antifilarials by inclusion of tetracycline in rodent model of brugian filariasis. Curr. Sci. 92: 655-658
  4. Behnke J.M., Rose R., Garside P. 1993: Sensitivity to ivermectin and pyrantel of Ancylostoma ceylanicum and Necator americanus. Int. J. Parasitol. 23: 945-952 Go to original source... Go to PubMed...
  5. Blackhall W.J., Pouliot J.F., Prichard R.K., Beech R.N. 1998: Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. Exp. Parasitol. 90: 42-48 Go to original source... Go to PubMed...
  6. Breton B., Diagne M., Wanji S., Bougnoux M.E., Chandre F., Marechal P., Petit G., Vuong P.N., Bain O. 1997: Ivermectin and moxidectin in two filarial systems: resistance of Monanema martini; inhibition of Litomosoides sigmodontis insemination. Parassitologia 39: 19-28 Go to PubMed...
  7. Chen Y.C., Hung Y.P., Fleckenstein L. 2002: Liquid chromatographic assay of moxidectin in human plasma for application to pharmacokinetic studies. J. Pharm. Biomed. Anal. 29: 917-926 Go to original source... Go to PubMed...
  8. Coles G.C., Giordano-Fenton D.J., Tritschler J.P. 2nd 1994: Efficacy of moxidectin against nematodes in naturally infected sheep. Vet. Rec. 135: 38-39 Go to original source... Go to PubMed...
  9. Conder G.A., Thompson D.P., Johnson S.S. 1993: Demonstration of co-resistance of Haemonchus contortus to ivermectin and moxidectin. Vet. Rec. 132: 651-652 Go to original source... Go to PubMed...
  10. Cotreau M.M., Warren S., Ryan J.L., Fleckenstein L., Vanapalli S.R., Brown K.R., Rock D., Chen C.Y., Schwertschlag U.S. 2003: The antiparasitic moxidectin: safety, tolerability, and pharmacokinetics in humans. J. Clin. Pharmacol. 43: 1108-1115 Go to original source... Go to PubMed...
  11. Craig T.M., Hatfield T.A., Pankavich J.A., Wang G.T. 1992: Efficacy of moxidectin against an ivermectin-resistant strain of Haemonchus contortus in sheep. Vet. Parasitol. 41: 329-333 Go to original source... Go to PubMed...
  12. Craven J., Bjorn H., Hennessy D., Friis C., Nansen P. 2001: Pharmacokinetics of moxidectin and ivermectin following intravenous injection in pigs with different body compositions. J. Vet. Pharmacol. Ther. 24: 99-104 Go to original source... Go to PubMed...
  13. Cully D.F., Vassilatis D.K., Liu K.K., Paress P.S., Van Der Ploeg L.H., Schaeffer J.M., Arena J.P. 1994: Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371: 707-711 Go to original source... Go to PubMed...
  14. Forrester S.G., Prichard R.K., Beech R.N. 2002: A glutamate-gated chloride channel subunit from Haemonchus contortus: expression in a mammalian cell line, ligand binding, and modulation of anthelmintic binding by glutamate. Biochem. Pharmacol. 63: 1061-1068 Go to original source... Go to PubMed...
  15. Hibbs R.E., Gouaux E. 2011: Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474: 54-60 Go to original source... Go to PubMed...
  16. Holden-Dye L., Walker R.J. 2006: Actions of glutamate and ivermectin on the pharyngeal muscle of Ascaridia galli: a comparative study with Caenorhabditis elegans. Int. J. Parasitol. 36: 395-402 Go to original source... Go to PubMed...
  17. Kelley L.A., Sternberg M.J. 2009: Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4: 363-371 Go to original source... Go to PubMed...
  18. Korth-Bradley J.M., Parks V., Patat A., Matschke K., Mayer P., Fleckenstein L. 2013: Relative bioavailability of liquid and tablet formulations of the antiparasitic moxidectin. Cli. Pharmacol. Drug Devel. 1: 32-37 Go to original source... Go to PubMed...
  19. Laskowski R.A., Macarthur M.W., Moss D.S., Thornton J.M. 1993: PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283-291 Go to original source...
  20. Macindoe G., Mavridis L., Venkatraman V., Devignes M.D., Ritchie D.W. 2010: HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res. 38: 5 Go to original source... Go to PubMed...
  21. Mancebo O.A., Verdi J.H., Bulman G.M. 1997: Comparative efficacy of moxidectin 2% equine oral gel and ivermectin 2% equine oral paste against Onchocerca cervicalis (Railliet and Henry, 1910) microfilariae in horses with naturally acquired infections in Formosa (Argentina). Vet. Parasitol. 73: 243-248 Go to original source... Go to PubMed...
  22. Martin R.J. 1996: An electrophysiological preparation of Ascaris suum pharyngeal muscle reveals a glutamate-gated chloride channel sensitive to the avermectin analogue, milbemycin D. Parasitol 112: 247-252 Go to original source... Go to PubMed...
  23. McCall J.W., Malone J.B., Hyong-Sun A., Thompson P.E.1973: Mongolian jirds (Meriones unguiculatus) infected with Brugia pahangi by the intraperitoneal route: a rich source of developing larvae, adult filariae, and microfilariae. J. Parasitol. 59: 436 Go to original source... Go to PubMed...
  24. Misra-Bhattacharya S., Katiyar D., Bajpai P., Tripathi R.P., Saxena J.K. 2004: 4-Methyl-7-(tetradecanoyl)-2H-1-benzopyran-2-one: a novel DNA topoisomerase II inhibitor with adulticidal and embryostatic activity against sub-periodic Brugia malayi. Parasitol. Res. 92: 177-182 Go to original source... Go to PubMed...
  25. Misra S., Chatterjee R.K., Sen A.B. 1984: The response to Litomosoides carinii to antifilarial agents in cotton rat (Sigmodon hispidus) & multimammate rat (Mastomys natalensis). Ind. J. Med. Res. 79: 749-754
  26. Misra S., Verma M., Mishra S.K., Srivastava S., Lakshmi V., Misra-Bhattacharya S. 2011: Gedunin and photogedunin of Xylocarpus granatum possess antifilarial activity against human lymphatic filarial parasite Brugia malayi in experimental rodent host. Parasitol. Res. 109: 1351-1360 Go to original source... Go to PubMed...
  27. Mukherjee M., Misra S., Chatterjee R.K. 1997: Optimization of test conditions for development of MTT as in vitro screen. Ind. J. Exp. Biol. 35: 73-76
  28. Mukherjee M., Misra S., Chatterjee R.K. 1998: Development of in vitro screening system for assessment of antifilarial activity of compounds. Acta Trop. 70: 251-255 Go to original source... Go to PubMed...
  29. National Research Council 1996: Guide for the care and use of laboratory animals. National Academics Press, Washington DC, 42-55 pp
  30. O'Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. 2011: Open Babel: An open chemical toolbox. J. Cheminform. 3: 1758-2946 Go to original source... Go to PubMed...
  31. Osei-Atweneboana M.Y., Eng J.K., Boakye D.A., Gyapong J.O., Prichard R.K. 2007: Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369: 2021-2029 Go to original source... Go to PubMed...
  32. Ottesen E.A., Hooper P.J., Bradley M., Biswas G. 2008: The global programme to eliminate lymphatic filariasis: health impact after 8 years. PLoS Negl. Trop. Dis. 2: e317 Go to original source... Go to PubMed...
  33. Prichard R., Menez C., Lespine A. 2012: Moxidectin and the avermectins: Consanguinity but not identity. Int. J. Parasitol. Drugs Drug. Resist. 2: 134-153 Go to original source... Go to PubMed...
  34. Ramirez B., Bickle Q., Yousif F., Fakorede F., Mouries M.A., Nwaka S. 2007: Schistosomes: challenges in compound screening. Expert Opin. Drug Discov. 2: S53-S61 Go to original source... Go to PubMed...
  35. Schares G., Hofmann B., Zahner H. 1994: Antifilarial activity of macrocyclic lactones: comparative studies with ivermectin, doramectin, milbemycin A4 oxime, and moxidectin in Litomosoides carinii, Acanthocheilonema viteae, Brugia malayi, and B. pahangi infection of Mastomys coucha. Trop. Med. Parasitology 45: 97-106
  36. Schwab A.E., Boakye D.A., Kyelem D., Prichard R.K. 2005: Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. Am. J. Trop. Med. Hyg. 73: 234-238 Go to PubMed...
  37. Sheriff J.C., Kotze A.C., Sangster N.C., Martin R.J. 2002: Effects of macrocyclic lactone anthelmintics on feeding and pharyngeal pumping in Trichostrongylus colubriformis in vitro. Parasitol. 125: 477-484 Go to original source...
  38. Shoop W.L., Mrozik H., Fisher M.H. 1995: Structure and activity of avermectins and milbemycins in animal health. Vet.Parasitol. 59: 139-156 Go to original source... Go to PubMed...
  39. Sippl M.J. 1993: Recognition of errors in three-dimensional structures of proteins. Proteins 17: 355-362 Go to original source... Go to PubMed...
  40. Strote G., Wieland S., Darge K., Comley J.C. 1990: In vitro assessment of the activity of anthelmintic compounds on adults of Onchocerca volvulus. Acta Leiden. 59: 285-296 Go to PubMed...
  41. Sylvester P.W. 2011: Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol. Biol. 716: 157-168 Go to original source... Go to PubMed...
  42. Tagboto S.K., Townson S. 1996: Onchocerca volvulus and O. lienalis: the microfilaricidal activity of moxidectin compared with that of ivermectin in vitro and in vivo. Ann. Trop. Med. Parasitol. 90: 497-505 Go to PubMed...
  43. Tompkins J.B., Stitt L.E., Ardelli B.F. 2010: Brugia malayi: in vitro effects of ivermectin and moxidectin on adults and microfilariae. Exp. Parasitol. 124: 394-402 Go to original source... Go to PubMed...
  44. Wass M.N., Kelley L.A., Sternberg M.J. 2010: 3DLigandSite: predicting ligand-binding sites using similar structures. Nucl. Acids Res. 38: 31 Go to original source... Go to PubMed...
  45. World Health Organization 1997: Lymphatic filariasis: reasons for hope. Geneva: World Health Organization; Document No.: WHO/CTD/FIL/97.4 Rev. 1, www.mectizan.org/diseases/lymphatic-filariasis-elephantiasis
  46. World Health Organization 2008: Report on an informal meeting assessing the feasibility of initiating the first Phase II study of moxidectin tablets in subjects infected with Onchocerca volvulus. http://www.who.int/tdr/publications/tdr-research-publications/moxidectin/en/
  47. World Health Organization 2013: Lymphatic filariasis, Fact Sheet No 102, www.who.int/mediacentre/factsheets/fs102/en/
  48. Xu D., Zhang Y. 2011: Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 101: 2525-2534 Go to original source... Go to PubMed...