Folia Parasitologica, vol. 63 (2016)

Folia Parasitologica 63:016 (2016) | DOI: 10.14411/fp.2016.016

T7 polymerase-driven transcription is downregulated in metacyclic promastigotes and amastigotes of Leishmania mexicana

Aygul Ishemgulova1, Natalya Kraeva1, Drahomíra Faktorová2, Lucie Podešvová1, Julius Lukeš2,3,4, Vyacheslav Yurchenko1,2,5,6
1 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic;
2 Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic;
3 Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic;
4 Canadian Institute for Advanced Research, Toronto, Canada;
5 Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA;
6 Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.

In our previous work we established a T7 polymerase-driven Tetracycline-inducible protein expression system in Leishmania mexicana (Biagi, 1953). We used this system to analyse gene expression profiles during development of L. mexicana in procyclic and metacyclic promastigotes and amastigotes. The transcription of the gene of interest and the T7 polymerase genes was significantly reduced upon cell differentiation. This regulation is not locus-specific. It depends on untranslated regions flanking open reading frames of the genes analysed. In this paper, we report that the previously established conventional inducible protein expression system may not be suitable for studies on differentiation of species of Leishmania Ross, 1903 and protein expression systems might have certain limitations.

Keywords: gene expression, untranslated regions, Tet-inducible system, Leishmania mexicana

Received: February 12, 2016; Accepted: April 18, 2016; Published online: May 18, 2016


References

  1. Aly R., Argaman M., Halman S., Shapira M. 1994: A regulatory role for the 5' and 3' untranslated regions in differential expression of hsp83 in Leishmania. Nucl. Acids Res. 22: 2922-2929. Go to original source... Go to PubMed...
  2. Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajria B., Gao X., Gardner M.J., Gingle A., Grant G., Harb O.S., Heiges M., Hertz-Fowler C., Houston R., Innamorato F., Iodice J., Kissinger J.C., Kraemer E., Li W., Logan F.J., Miller J.A., Mitra S., Myler P.J., Nayak V., Pennington C., Phan I., Pinney D.F., Ramasamy G., Rogers M.B., Roos D.S., Ross C., Sivam D., Smith D.F., Srinivasamoorthy G., Stoeckert C.J., Jr., Subramanian S., Thibodeau R., Tivey A., Treatman C., Velarde G., Wang H. 2010: TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucl. Acids Res. 38: D457-462. Go to original source... Go to PubMed...
  3. Bates P.A. 1994a: The developmental biology of Leishmania promastigotes. Exp. Parasitol. 79: 215-218. Go to original source... Go to PubMed...
  4. Bates P.A. 1994b: Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology 108: 1-9. Go to original source... Go to PubMed...
  5. Breitling R., Klingner S., Callewaert N., Pietrucha R., Geyer A., Ehrlich G., Hartung R., Muller A., Contreras R., Beverley S.M., Alexandrov K. 2002: Non-pathogenic trypanosomatid protozoa as a platform for protein research and production. Protein Expr. Purif. 25: 209-218. Go to original source... Go to PubMed...
  6. Campbell D.A., Thomas S., Sturm N.R. 2003: Transcription in kinetoplastid protozoa: why be normal? Microbes Infect. 5: 1231-1240. Go to original source... Go to PubMed...
  7. Charest H., Zhang W.W., Matlashewski G. 1996: The developmental expression of Leishmania donovani A2 amastigote-specific genes is post-transcriptionally mediated and involves elements located in the 3'-untranslated region. J. Biol.Chem. 271: 17081-17090. Go to original source... Go to PubMed...
  8. Dillon L.A., Okrah K., Hughitt V.K., Suresh R., Li Y., Fernandes M.C., Belew A.T., Corrada Bravo H., Mosser D.M., El-Sayed N.M. 2015: Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucl. Acids Res. 43: 6799-6813. Go to original source... Go to PubMed...
  9. Fernandez-Moya S.M., Estevez A.M. 2010: Posttranscriptional control and the role of RNA-binding proteins in gene regulation in trypanosomatid protozoan parasites. Wiley Interdiscip Rev RNA 1: 34-46. Go to original source... Go to PubMed...
  10. Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J., Ishemgulova A., Jackson A.P., Kelly S., Kostygov A., Logacheva M.D., Maslov D.A., Opperdoes F.R., O'Reilly A., Sádlová J., Ševčíková T., Venkatesh D., Vlček Č., Volf P., Votýpka J., Záhonová K., Yurchenko V., Lukeš J. 2016: Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 6: 23704. Go to original source... Go to PubMed...
  11. Garcia-Estrada C., Perez-Pertejo Y., Ordonez D., Balana-Fouce R., Reguera R.M. 2008: Characterization of the 5' region of the Leishmania infantum LORIEN/MAT2 gene cluster and role of LORIEN flanking regions in post-transcriptional regulation. Biochimie 90: 1325-1336. Go to original source... Go to PubMed...
  12. Haile S., Dupe A., Papadopoulou B. 2008: Deadenylation-independent stage-specific mRNA degradation in Leishmania. Nucl. Acids Res. 36: 1634-1644. Go to original source... Go to PubMed...
  13. Hashimi H., Kaltenbrunner S., Zíková A., Lukeš J. 2016: Trypanosome mitochondrial translation and tetracycline: no sweat about Tet. PLoS Pathog. 12: e1005492. Go to original source... Go to PubMed...
  14. Jirků M., Yurchenko V.Y., Lukeš J., Maslov D.A. 2012: New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J. Eukaryot. Microbiol. 59: 537-547. Go to original source... Go to PubMed...
  15. Kraeva N., Butenko A., Hlaváčová J., Kostygov A., Myškova J., Grybchuk D., Leštinová T., Votýpka J., Volf P., Opperdoes F., Flegontov P., Lukeš J., Yurchenko V. 2015: Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 11: e1005127. Go to original source... Go to PubMed...
  16. Kraeva N., Ishemgulova A., Lukeš J., Yurchenko V. 2014: Tetracycline-inducible gene expression system in Leishmania mexicana. Mol. Biochem. Parasitol. 198: 11-13. Go to original source... Go to PubMed...
  17. Kushnir S., Gase K., Breitling R., Alexandrov K. 2005: Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expres. Purif. 42: 37-46. Go to original source... Go to PubMed...
  18. Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V. 2014: Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 195: 115-122. Go to original source... Go to PubMed...
  19. Magill A.J. 1995: Epidemiology of the leishmaniases. Dermatol. Clin. 13: 505-523. Go to PubMed...
  20. McNicoll F., Muller M., Cloutier S., Boilard N., Rochette A., Dube M., Papadopoulou B. 2005: Distinct 3'-untranslated region elements regulate stage-specific mRNA accumulation and translation in Leishmania. J. Biol. Chem. 280: 35238-35246. Go to original source... Go to PubMed...
  21. Myler P.J. 2008: Genome structure and content. In: P.J. Myler and N. Fasel (Eds.), Leishmania: After the Genome. Caister Academic Press, Wymondham, pp. 15-28
  22. Requena J.M. 2011: Lights and shadows on gene organization and regulation of gene expression in Leishmania. Front. Biosci. 17: 2069-2085. Go to original source...
  23. Rochette A., Raymond F., Ubeda J.M., Smith M., Messier N., Boisvert S., Rigault P., Corbeil J., Ouellette M., Papadopoulou B. 2008: Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 9: 255. Go to original source... Go to PubMed...
  24. Rogers M.B., Hilley J.D., Dickens N.J., Wilkes J., Bates P.A., Depledge D.P., Harris D., Her Y., Herzyk P., Imamura H., Otto T.D., Sanders M., Seeger K., Dujardin J.C., Berriman M., Smith D.F., Hertz-Fowler C., Mottram J.C. 2011: Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 21: 2129-2142. Go to original source... Go to PubMed...
  25. Sádlová J., Price H.P., Smith B.A., Votýpka J., Volf P., Smith D.F. 2010: The stage-regulated HASPB and SHERP proteins are essential for differentiation of the protozoan parasite Leishmania major in its sand fly vector, Phlebotomus papatasi. Cell Microbiol. 12: 1765-1779. Go to original source... Go to PubMed...
  26. Saxena A., Lahav T., Holland N., Aggarwal G., Anupama A., Huang Y., Volpin H., Myler P.J., Zilberstein D. 2007: Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol. Biochem. Parasitol. 152: 53-65. Go to original source... Go to PubMed...
  27. Votýpka J., Klepetková H., Yurchenko V.Y., Horák A., Lukeš J., Maslov D.A. 2012: Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist 163: 616-631. Go to original source... Go to PubMed...
  28. Záhonová K., Hadariová L., Vacula R., Yurchenko V., Eliáš M., Krajčovič J., Vesteg M. 2014: A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett. 588: 783-788. Go to original source... Go to PubMed...