ANCYLOSTOMA CANINUM: A REPORT ON THE PERIPHERAL EOSINOPHILIA IN NAIVE AND IMMUNIZED SWISS ALBINO MICE

N. P. KOLHE and G. N. JOHRI

Helmintology Immunology Laboratory, School of Studies in Zoology, Vikram University, Ujjain

Abstract. The number of peripheral eosinophils was counted in female Swiss albino mice on 1, 4, 9, 16 and 30 days after infection with various single (500, 1,000 and 2,000) and weekly repeated (500 + 500 + 1,000, 1,000 + 1,000 and 1,000 + 1,000 + 2,000) doses of filariform Ankylostoma caninum larvae. The eosinophil response was significantly higher in infected than in uninfected mice and reached a peak on day 16 in naive and day 4 and 9 in immunized mice. Immunized mice were significantly more eosinophilic than the naive mice. An attempt has been made to correlate eosinophilia with immunity of mice to A. caninum larvae.

Peripheral blood and tissue hypereosinophilia are characteristics of diverse parasitic infestations in man and animals. Many workers have reported an increase in the number of eosinophil leucocytes in blood during experimental infection of various helminths, e.g. Haemonchus contortus (Soulsby 1960), Trichinella spiralis (Zaiman et al. 1962, Basten et al. 1970, Basten and Beeson 1970, Ismail and Tanner 1972), Toxocara canis (Sharp and Olson 1962, Olson and Schulz 1963), Trichostrongylus colubriformis (Rothwell and Dineen 1972), Ascaris suum (Nielsen et al. 1974), Schistosoma sp. (Colley 1974, Sturrock et al. 1977), Taenia taeniaformis (Ansari and Williams 1976, Ansari et al. 1976) and Nippostrongylus brasiliensis (Ogilvie et al. 1978). Recently Rothwell and Dineen (1972) and David (1977) have implicated an important role for the eosinophils in worm expulsion and/or destruction.

Since Ancylostoma caninum undergoes extensive migration and distribution in mice after oral infection (Bhopale and Johri 1976, 1978) leading to the alterations in serum protein levels (Bhopale and Johri 1978a, 1979), intestinal mast cell numbers (Vardhani and Johri 1979a) and histamine content (Vardhani and Johri 1979b) without developing into adults, this model serves well for the study of mechanism of immunity as there are no undue complications caused by antigenic variations during development. The present investigation records the changes in the number of eosinophilic leucocytes in peripheral blood of Swiss albino mice after infection with various single and repeated doses of A. caninum larvae and their relationship to the immune response.

MATERIAL AND METHODS

Female Swiss albino mice having body weight of 18—20 g were used in these experiments. They have been originally obtained from Hoffkin Pharmaceutical Corporation Ltd., Bombay and have been closely bred among themselves for the last 10 years in this laboratory. They were provided with Gold Mohur Mice feed by Hind Lever Co., Bombay and clean drinking water ad libitum. The animal house was maintained under ideal conditions of temperature, light and ventilation. The light-darkness cycle was 12:12 hours. Filariform A. caninum larvae were obtained from cultures of the faeces of an experimentally infected dog maintained in the laboratory (Sen et al. 1965) and administered orally to the mice in required doses. Blood was collected between 2 to 4 p.m. each time to minimize the diurnal variation (Basten et al. 1970). Prior to bleeding, the mice were warmed under...
RESULTS

The results are presented in Figs. 1 and 2. Significantly higher eosinophil counts occurred in all the experimental groups in comparison to uninfected group (F < 0.001, t = 5.41 with seven degrees of freedom) throughout the experiment. An exception was group C mice infected with 2,000 larvae each in which eosinophil counts did not differ from that of controls at day 1.

![Fig. 1. Mean number of eosinophils (± standard deviation) per hundred leukocytes in mice infected per os with single doses of 500 (A), 1,000 (B) and 2,000 (C) infective Ancylostoma caninum larvae.](image)

In all the singly infected groups A, B and C, the maximum number of eosinophils was recorded at days 16. In case of repeatedly infected groups, it was at day 4 in groups D and E, and at day 9 in F. The eosinophilia in all the experimental groups was evident even one month after infection. Observations in group B were not possible on day 30 because of the mortality of animals in this group.

![Fig. 2. Mean number of eosinophils (± standard deviation) per hundred leukocytes in mice infected per os with weekly repeated doses of 500 + 500 + 1,000 (D), 1,000 + 1,000 (E) and 1,000 + 1,000 + 2,000 (F) infective Ancylostoma caninum larvae.](image)

DISCUSSION

It is of common knowledge that tissue invading parasites are more eosinophilic than the luminal dwelling ones and this applies well to A. caninum in mouse as the present investigation clearly shows. Different single or repeated infections of A. caninum larvae in mice evoked a significant peripheral eosinophilia which was consistent throughout the experiments. These results are in agreement with the observations by Soulsby (1969), Sharp and Olson (1962), Zaiman et al. (1962), Olson and Schulz (1963), Basten et al. (1970), Basten and Beeson (1970), Ismail and Tanner (1972), Colley (1974), Nielsen et al. (1974), Anseri and Williams (1976), Sturrock et al. (1977) and Ogilvie et al. (1978) who reported marked eosinophilia after experimental infections with various helminths.

The onset of eosinophilia occurred on the very first day after infection in all the experimental groups except C, and thus coincided with the migration of larvae to the muscles (Bhopale and Johri 1975, 1978a). Among the singly infected or naive mice a pronounced increase in eosinophil numbers was found in group B while in A and C it was less marked. This can be explained on the basis of immune response of mice to lower and higher doses of infection as described by Bhopale and Johri (1975, 1978a) who found that a dose of 500 larvae was unable to stimulate a measurable immune response and the 2,000 larval dose was so high as to result in a rapid and heavy expulsion of larvae. In all the singly infected groups, the maximum number of eosinophils was found at 16 days when all the recovered larvae get distributed either in brain or muscles of various regions of the body. Thereafter the number of eosinophils began to decline up to 30 day with decreasing larval recoveries (Bhopale and Johri 1975). A maximum increase in serum globulins of mice infected with 1,000 larvae on day 9 and of mice infected with 500 and 2,000 larvae on day 15 (Bhopale and Johri 1978b) suggests that an interaction of antibody and antigen might have attracted a large number of eosinophils resulting in a peak eosinophil response in all the singly infected groups (A, B and C) on day 16. Nielsen et al. (1974) also associated peripheral eosinophilia of normal mice with immunity to migrating A. suum larvae and positive indirect haemagglutinin antibody titers. As the larvae are
REFERENCES


Received 2 December 1981.

N. P. K., Helminthology Immunology Laboratory, School of Studies in Zoology, University of Ujjain, M.P. 456010, India