Anoplocephalid cestodes of veterinary and medical significance: a review

Guillermo Denegri¹, Wilbert Bernadina², Jorge Perez-Serrano³ and Filomena Rodriguez-Caabeiro³

¹Department of Biology, Faculty of Science, National University of Mar del Plata, Funes 3250 (7600), Mar del Plata, Argentina; ²Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, PO Box 80.165, 3508 TD Utrecht, The Netherlands;

³Laboratory of Parasitology, Faculty of Pharmacy, University of Alcalá de Henares, 28.871. Alcalá de Henares, Madrid, Spain.

Key words: Anoplocephalidae, veterinary importance, medical importance, biological cycle, review

Abstract. Cestodes of the family Anoplocephalidae Cholodkovsky, 1902, in their adult form, parasitize a variety of hosts, including reptiles, birds and mammals. To complete their life cycle, an intermediate host is required. This study gives a critical review of the life cycles of genera principally important to veterinary medicine (but sporadically infecting man): Anoplocephalinae (Anoplocephala, Anoplocephaloides, Bertiella and Moniezia) and Thysanosomatinae (Avitellina, Stilesia, Thysaniezia and Thysanosoma), using data reported by others and our own observations. The accepted paradigm on the biology of the anoplocephalic cestodes is that oribatid mites (Acarina) serve as intermediate hosts. However, as regards the genera Avitellina, Thysaniezia and Thysanosoma, it is still unclear whether oribatid mites are indeed the intermediate hosts, as larval forms (cysticercoids) have also been found in collembolans and psocids. Using the controversial biological cycle of Thysanosoma actinioides (Diesing, 1834), a theoretical methodological research proposal for parasitology was constructed which attempts to define a conceptional mark enabling us to predict and explain the parasite-hosts' related phenomenon. Aspects of this proposal are discussed using the biology of the cestodes of family Anoplocephalidae, as examples.

Cestodes of the family Anoplocephalidae Cholod-kovky, 1902, are widely distributed parasites of a great variety of reptiles, birds and mammals. Most of them are found in mammals and present knowledge of their taxonomy, biology and evolution, therefore, is primarily derived from studies in mammalian host species. The potential for some of these anoplocephalid cestodes to infect economically important domestic ruminants (see e.g., Denegri 1987, 1990) makes them particularly significant.

The history of the family began when Blanchard (1891a) included the genera of the family Taeniidae, Anoplocephala Blanchard, 1849, Bertia Blanchard, 1891 and Moniezia Rudolphi, 1810 in the subfamily Anoplocephalinae (unarmed scolex). Subsequent authors, for example Cholodkowsky (1902), Fuhrmann (1907), Douthitt (1915) and Baer (1927), contributed to a greater understanding of the taxonomy of the group. Mola (1928) raised the subfamily Anoplocephalinae to the rank of family and created a new superfamily Anoplocephalioidea. Skrjabin (1933) introduced the suborder Anoplocephalata comprising two families, the Anoplocephalidae and the Stilesiidae. Further subdivision of these families resulting in the inclusion of a greater number of species arose from the work of Spasskii (1950, 1961), Baer and Fain (1951a,b) and Lopez-Neyra (1954, 1955). An important subsequent account of the family Anoplocephalidae (Stunkard 1961) suggested the inclusion, as subfamilies, of the four following distinct biological and bionomic groups: (i) Anoplocephalinae Blanchard, 1891, transmitted by oribatid mites, (ii) Catenotaeniinae Spasskii, 1950, transmitted by tyroglyphid mites, (iii) Linstowiinae Fuhrmann; 1907 transmitted by lepidopterous and coleopterous insects, and (iv) Thysanosomatinae Fuhrmann, 1907, transmitted by psocopterous insects. The suggestion of Stunkard (1961) with regard to the Catenotaeniinae Spasskii, 1950, was dismissed by Wardle et al. (1974). These authors created a new order Anoplocephalata, equivalent to Skrjabin's suborder Anoplocephalata, in which Stunkard's subfamilies are given full family status, i.e., Anoplocephalidae Blanchard, 1891, Linstowiidae Fuhrmann, 1932, and Thysanosomidae Fuhrmann, 1907. To these families they added Yamaguti's (1959) family Triplotaeniidae. Finally, Tenora (1976) using evolutionary criteria concluded that, based on the structure of the uterus, the family Anoplocephalidae should be subdivided into two subfamilies, Anoplocephalinae and Monieziinae. Most recently, Beveridge (1994) proposed four subfamilies based on four types of uterine development: Anoplocephalinae, Linstowiinae, Inermicapsiferinae and Thysanosomatinae.

The anoplocephalids are heteroxenous parasites and require both an intermediate and definitive host to complete their cycle. The experimental infection of

Address for correspondence: G. Denegri, Department of Biology, Faculty of Science, National University of Mar del Plata, Funes 3250 (7600), Mar del Plata, Argentina. Phone: ++54 23 752426; Fax: ++54 23 753150; E-mail: gdenegri@mdp.edu.ar

intermediate host species, through the pioneering work of Stunkard (1937), has produced a paradigm in the subject. This author defined the role of oribatid mites in the ontogeny of *Moniezia expansa* (Rudolphi, 1810) of sheep by experimental infection with oncospheres of this parasite.

Oribatid mites are important components of the soil fauna and have a cosmopolitan distribution. Sengbusch (1977) analysed the relationship of oribatid and anoplocephalid species and produced a list of oribatid species that serve as intermediate hosts for several different anoplocephalid cestodes. Denegri (1993) demonstrated that 127 species of oribatid mites in 27 families served as intermediate hosts of 14 genera and 27 species of anoplocephalid tapeworms. A model based on the trophic characteristics of the intermediate and definitive hosts has been presented recently (Denegri 1991, 1996, 1997).

The aim of this study was to analyse the biological cycles of cestodes of the family Anoplocephalidae that are economically important or of public health concern. Additionally, the biological cycles of those species that still remain controversial are discussed.

Genera and species of the Anoplocephalidae with some significant agents of disease in humans and animals: biological cycle

Anoplocephalinae Blanchard, 1891

Anoplocephala Blanchard, 1849 (Syn. Plagiotaenia Peters, 1871)

This genus was created by Blanchard (1849) with the purpose of grouping all the tapeworms of horses. The two most important species found in horse are Anoplocephala magna (Abilgaard, 1789) and A. perfoliata (Goeze, 1782). These species are found rather frequently; light infections cause no clinical signs whereas high parasite burdens may cause disease. Bashkirova (1941) was the first to infect experimentally oribatid mites of the families Galumnidae Jacot, 1925 (Galumna obvius and G. nervosus), Oribatulidae Thor, 1929 (i.e., Scheloribates laevigatus and S. latipis) and Carabodidae Koch, 1837 (i.e., Carabodes spp.) with eggs of A. perfoliata. These experiments all led to the development of mature cysticercoids. Attemps to infect members of other families such as Achipteridae Thor, 1929 (Achipteria spp.) and Liacaridae Sellnick, 1929 (Liacarus spp.) failed to produce mature cysticercoids although in some larval development was observed. In these studies Bashkirova (1941) also obtained mature cysticercoids of A. magna from infected S. laevigatus and S. latipes. No other work on the biology of A. magna has been reported so far.

Subsequent authors (Kuliev 1963, Romero et al. 1989, Schuster 1991) incriminated other species (Ceratozetes bulanovae, Eremaeus oblongus, Galumna dimorfica, Hermanniella granulata, Liebstadia similis, Scheloribates latipes, Scheloribates sp., Trichoribates incisellus, Urubambates schachtachtinskoi and Zygoribatula microspora) as intermediate hosts of A. perfoliata.

Romero et al. (1989) discussed epidemiological aspects of horse anoplocephalosis in relation to other cestodes from the same family that are found in the domesticated herbivores of Argentina.

Anoplocephaloides Baer, 1923

(Syn. Paranoplocephala Lühe, 1910; Aprostatandrya Kirschenblatt, 1932)

The genus Anoplocephaloides was created by Baer in 1923 to include cestodes formerly assigned to the genus Anoplocephala Blanchard, 1848 (Rausch 1976). Anoplocephaloides mamillana (Mehlis, 1831) (svn. Taenia mamillana Mehlis, 1831; Anoplocephala mamillana Mehlis, 1831; Paranoplocephala mamillana Mehlis, 1831) occurs in the small intestine and sometimes in the stomach of horses. It is a small cestode and is characterized by having a narrow scolex with openings of the suckers that are slit-like. A. mamillana infections of horses very seldomly result in disease. Several species of oribatid mites may act as intermediate hosts. The most important ones include Galumna obvia, G. eliminata, G. nervosus, Allogalumna longipluma, Achipteria spp., Ceratozetes spp. and Scheloribates spp. (Bashkirova 1941, Spasskii 1961, Sengbusch 1977).

Bertiella Stiles et Hassall, 1902

(Syn. Bertia Blanchard, 1891; Parabertiella Nybelin, 1917; Indotaenia Singh, 1962; Prototaenia Baer, 1927; Beveridgia Spasskii, 1988)

The genus *Bertia* was first described by Blanchard (1891b) in the chimpanzee (*Troglodytes niger*) with *Bertia satyri* and *B. studeri* in the orang-utan (*Simia satyri*). The name *Bertia* was later changed to *Bertiella* by Stiles and Hassall (1902).

Cestodes of the genus *Bertiella* are common parasites in primates, rodents, dermopterans, Australian marsupials and are the only anoplocephalids occurring in man. Two species, *B. studeri* and *B. mucronata*, each with a different geographic distribution, parasitize human beings.

The majority of human cases involve *B. studeri*, although some cases of *B. mucronata* infections have also been reported (Feldman et al. 1983, Denegri and Perez-Serrano 1997). A comparative study (Denegri 1985a) established the differences between a human *B. mucronata* isolate and a monkey (*Alouatta caraya*) *B.*

mucronata isolate as well as with B. studeri, thereby elaborating on the geographic distribution of both species. In this study the author also discussed the epidemiological aspects concerning the acquired potentiality of this parasite to infect man.

In attempting the completion of its biological cycle, Stunkard (1940) experimentally infected two species of oribatid mites, Scheloribates laevigatus and Galumna sp., with eggs of B. studeri derived from a non-human primate Macacus rhesus originating from India. Although cysticercoids were produced in these mites, no adult cestodes were obtained when these cysticercoids were fed to M. cynomolgus. Denegri (1985b) reported the experimental infection of two species of the family Oribatulidae, Dometorina suramericana and Scheloribates atahualpensis, with eggs of human B. mucronata. Furthermore, this study determined the epidemiological chain of this parasitosis and, based on ecological considerations, has formulated the concept of its potential biotope.

Moniezia Blanchard, 1891

(Syn. Fuhrmannella Baer, 1925, Baeriezia Skryabin et Schulz, 1937; Blanchardiezia Skryabin et Schulz, 1937; Eranuides Semenova, 1972)

The first account of the genus Moniezia by Blanchard (1891a) included 11 species. Moniez (1891) broadened the concept of this genus by the addition of Taenia ovilla Rivolta, 1878, as well as Thysanosoma actiniodes Diesing, 1834. Stiles and Hassal (1893) reduced the number of species to 8 and divided them into three groups based on the presence or absence of interproglottidal glands: (i) plannissima group with interproglottidal glands arranged in a linear manner, (ii) expansa group with "sac-like" interproglottidal glands, and (iii) denticulata group without interproglottidal glands. A later study (Douthitt 1915) grouped the species into two groups: (i) carrinoi group and (ii) expansa group. Further generic subdivision was provided by the taxonomic studies of Theiler (1924) and Meggitt (1927). A monographic study of the genus Moniezia conducted by Baer (1927) included six species, M. benedeni (Moniez, 1879), M. denticulata (Rudolphi, 1810), M. expansa (Rudolphi, 1810), M. pallida Möning, 1926, M. rugosa (Diesing, 1850) and M. trigonophora Stiles et Hassall, 1893. However, the generic subdivision and the key provided by Lopez-Neyra (1954, 1955) are the best so far. Moniezia has attracted most attention because of its cosmopolitan distribution and economic losses due to infections of domestic ruminants.

The two most important species are *M. benedeni*, principally infecting cattle, and *M. expansa*, principally infecting sheep. Seventy three species of oribatid mites have been incriminated as intermediate hosts for *M. expansa* and 43 species for *M. benedeni* (see Denegri

1993). Earlier studies performed by Stunkard (1937, 1939) defined the role of oribatid mites in the biology of *M. expansa* while many investigators have searched for species of naturally infected oribatid mites, or have attemp their experimental infection. Thus, various studies were initiated with the purpose of elucidating epidemiological aspects of ovine and bovine monieziosis due to infections with the genus *Moniezia* (Kates and Runkel 1948, Soldatova 1950, Shaldibina 1953, Kuznetsov 1959, 1966b, 1970, Rajski 1961, Nazarova 1963, Kassai and Mahunka 1965, Alkov 1971, Lin and Sung 1975, Narsapur and Prokopič 1979, Barutski et al. 1986, Denegri and Alzuet 1992, Xiao and Herd 1992).

Thysanosomatinae Skryabin, 1933

Avitellina Gough, 1911

(Syn. Hexastichorchis Blei, 1921; Anootypus Woodland, 1928; Ascotaenia Baer, 1927).

The genus Avitellina includes four species of veterinary importance, Avitellina chalmersi Woodland, 1927, A. centripunctata (Rivolta, 1874), A. goughi Woodland, 1927 and A. tatia Bahlerao, 1936. Members of this genus occur in the small intestine of sheep and other domestic ruminants in Europe, Asia, Africa and North America. The parasite may reach a length of more than 3 metres. The genital organs are single and the genital pores alternate irregularly. The uterus transverses the central region of the proglottids. The eggs, after being formed, pass into a thick-walled paruterine organ.

In studying the biological cycle of A. centripunctata of sheep and goats, it was demonstrated (Nadakal 1960) that oribatid mites serve as intermediate hosts of the parasite.

Svadzhyan (1960) tried to infect oribatid mites with eggs of A. centripunctata and Thysaniezia giardi but failed to do so. Kuznetsov (1962) reported the development of larval stages of Avitellina sp. and T. giardi in psocids but failed to induce the development of adults in sheep that were fed with mature cysticercoids. In a subsequent paper Kuznetsov (1966a) reviewed his previous work and that of Svadzhyan (1960) concluding that insects of the order Corrodentia may serve as intermediate hosts. Kuznetsov (1966a), nevertheless, suggested that psocids were merely facultative hosts of A. centripunctata and that the real intermediate hosts were either, other species of psocids or groups of insects phylogenetically related to psocids.

A report from India (Narsapur 1974) described the infection of two species of oribatid mites of the genus Scheloribates (S. fimbriatus and S. laevigatus) using eggs of Avitellina lahorea, a species parasitic in sheep. The involvement of oribatid mites in the life cycle of A. centripunctata was also mentioned in the review article of Sengbusch (1977), as well as in the report of Zhaltsanova et al. (1977).

A report by Tverdokhlebov et al. (1988) claimed to have completed the life cycle of *A. centripunctata* under laboratory conditions. In this study, infection of collembolans of the genus *Entomobrya* resulted in the production of cysticercoids 22 days later. When sheep were fed with these collembolans, immature cestodes were found in their intestines 40 days later. Tishchenko (1991) investigated the epidemiology of *Avitellina* infections in sheep. After analysing soil collembolans for seasonal variations in natural infections, and lambs for the presence of adult tapeworms, he suggested optimal periods for anthelmintic treatments.

Stilesia Railliet, 1893

(Syn. Aliezia Shinde, 1969)

This genus includes two species infecting domestic ruminants: *Stilesia hepatica* Wolffhügel, 1903 and *S. globipunctata* Rivolta, 1874. *S. hepatica* occurs in the biliary ducts of sheep, cattle, goats and wild ruminant species in Sudan, Kenya, Tanzania, Angola, Zambia, Malawi and South Africa. In some countries of Africa it affects 90-100% of sheep. Adults are between 20 and 50 cm long; the proglottids contain single genital organs with irregularly alternating genital pores. The eggs may be found in two paruterine organs each containing approximately 30 eggs. The biological cycle of *S. hepatica* is not known. It is probable that oribatid mites function as intermediate hosts.

S. globipunctata occurs in the small intestine of domestic and wild ruminants in Europe, Africa and Asia. It is 40 to 60 cm long and localises at the duodenal-jejunal junction. Heavy infection with this parasite may cause the death of the host animal. The following species of oribatid mites have been shown to be intermediate hosts: Africacarus calcaratus, Allogalumna pellucida, Galumna baloghi, G. pellucida, Scheloribates conglobatus, S. fimbriatus, S. perforatus and Zygoribatula conglobatus (Graber and Gruvel 1964, 1967, Sengbusch 1977).

Thysaniezia Skrjabin, 1926 (Syn. Helictometra Baer, 1927)

Thysaniezia ovilla Rivolta, 1878 occurs in the small intestine of domestic ruminants in Europe, former USSR, Asia, Africa and America. Thysaniezia was once considered a genus distinct from the other genera of the family Anoplocephalidae. Wardle et al. (1974) dismissed this contention, proposing instead to consider Thysaniezia and Helictometra as synonyms. Following this proposal, Soulsby's (1982) account of the genus Thysaniezia included all species previously allocated to a separate genus Helictometra. The latter are economically important parasites in America (Denegri 1987).

Oribatid mites have been incriminated experimental intermediate hosts. The species capable of producing the larval stage of the parasite included: Achipteria spp., Liebstadia similis, Punctoribates punctum, Scheloribates carvialatus, S. laevigatus, S. laticeps, S. latipes, Trichoribates incisellus, Zygoribatula cognata and Z. skrjabini (Potemkina 1944, Sengbusch 1977, Zhaltasanova et al. 1977, Migliani and Bali 1990). In contrast, Svadzhyan (1960, 1963) failed to experimentally infect oribatid mites with eggs of T. giardi. Conversely, Kuznetsov (1962, 1966a) having recovered larval stages of this parasite from psocids, failed to produce its strobilar form.

In South America (and in Argentina, in particular) the intermediate hosts of *H. giardi* (now *T. ovilla*) are oribatid mites of the family Oribatulidae, *Zygoribatula lata* and *Z. elongata* (Yannarella et al. 1978, Denegri et al. 1983).

Thysanosoma Diesing, 1835

Thysanosoma actinioides (Diesing, 1834), the "fringed tapeworm", occurs in the biliary and pancreatic ducts and the anterior parts of the duodenum mainly of sheep, and to a lesser extent cattle and goats, especially in the western parts of the USA (Allen 1973) and also in South America (Yannarella et al. 1978, Denegri 1987, 1990). It has a high prevalence in Argentina's Patagonian region. In San Carlos de Bariloche (a zone of the province Rio Negro) 100% of sheep were found to be heavily infected, the mean worm burden being 35.5 specimens per individual (Led et al. 1979, 1980). High parasite burdens do not produce clinical signs, although the parasites may produce distention of the biliary ducts, generally accompanied by marked fibrosis (Allen 1973). Inflammation (catarrhal) of the duodenum and the biliary tract and multiple petechiae in the duodenum (probably) attributable to scolex implantations (Denegri 1987) have been reported.

T. actinioides measures less than 30 cm. Each segment contains two sets of genital organs. The posterior border of each segment is markedly fringed which explains the common name "fringed tapeworm". This parasite, in common with those of the genera Avitellina, Stilesia and Thysaniezia, has paruterine organs, evaginations of the uterine wall where the eggs are formed. Following maturation, the sac-like structures detach from the uterus, form a thick covering around several oncospheres and then transform into egg capsules. These structures have several advantages: (i) the thick wall of the capsule protects the enclosed eggs, (ii) a number of eggs packed together in such protective covers facilitates better scattering, and (iii) the larger size renders them more conspicuous to the intermediate hosts (Spasskii 1961).

Controversy exists concerning the biological cycle of *T. actinioides*. Studies carried out by Allen (1959) demonstrated unequivocally that larval stages of this cestode could develop in insects of the order Psocoptera. However, as he was unable to infect sheep fed cysticercoids from infected psocids, he postulated that two intermediate hosts were required.

Studies of the soil fauna carried out in Argentina's Patagonia region (a highly endemic zone for thysanosomosis) revealed the presence in this region of 'an abundance' of oribatid species. Experimental infections of oribatid mite species with eggs of *T. actinioides* produced larval stages that were not completely developed (Denegri, unpubl. data).

DISCUSSION

In the cestode literature, oribatid mites are attributed an essential role in the biology of the family Anoplocephalidae, as the intermediate hosts. However, there is also undeniable experimental evidence indicating that some genera of the family (Avitellina, Thysaniezia and Thysanosoma) utilize other hosts.

In his account of the family Anoplocephalidae, Stunkard (1961) divided it into subfamilies on the basis of the group of invertebrates acting as intermediate hosts. Thus the subfamily Thysanosomatinae Skrjabin, 1933, was erected with the genus Thysanosoma as the type. The subfamily which also includes the genera Avitellina and Thysaniezia may be differentiated from the subfamily Anoplocephalinae by the structure of its uterus. The controversial and, as yet, unresolved biological cycle of Thysanosoma actiniodes prompted Denegri (1991, 1996, 1997) to carry out some theoretical-methodological analytical studies resulting in the construction of a program for research in parasitology. The program is based on the methodology proposed in "Programmes for Scientific Research" by the epistemologist Lakatos (1978).

Using the approach by Denegri (1991, 1996, 1997) for studying parasitic cestodes of the family Anoplocephalidae, the following might be deduced:

- (a) The more herbivorous the higher the density of infecting anoplocephalids and the species diversity. For example in sheep the following genera and species are found: Avitellina (centripunctata); Moniezia (benedeni, expansa); Stilesia (hepatica, globipunctata); Thysaniezia (ovilla) and Thysanosoma (actinioides).
- (b) The less herbivorous the host, the less the intensity and (species) density of the infecting anoplocephalids. In non-human primates, for example, *Bertiella* and *Moniezia* are found.
- (c) In omnivorous hosts, occasionally anoplocephalids at very low density and species diversity occur. In

humans some sporadic cases of infections with the genus Bertiella have been reported.

(d) In carnivorous hosts, except one report describing the genus *Bertiella* in a dog (Africa and Garcia 1935), no cestodes of the family Anoplocephalidae have been found. Regarding the above *Bertiella* infection in dogs, Denegri (1991) explains this finding on the basis of the "hard core" in parasitology he proposes. In this concept the occurrence of an anoplocephalid cestode in the dog is due to the trophic variations the dog has been subjected to during its domestication by man. Thus the dog has come to be a potential host for anoplocephalids, this being dependent on the frequency of contacts with soil oribatid mites.

The relevance to the theory for inferred parasitism through trophic behaviour we are defending here is not the finding (thus far advocated) of larval stages (cysticercoids) in collembols, oribatid mites and/or psocids. This condition solely signals the potential of such organisms to act as intermediate hosts for anoplocephalid cestodes. For our program of investigation in parasitology though, what is of fundamental importance, is demonstrating that collembols, oribatid mites and/or psocids are important components of the fauna ingested with food by the definitive hosts. Thus, nonconstituents of the habitual diet of the definitive hosts, despite being potential intermediate hosts (i.e. having the capacity to produce cysticercoids), have no probability of being regular intermediate hosts for the parasitic cestode studied.

The theory on trophism enables us to explain why domestic ruminants harbour only adult parasitic cestodes of the family Anoplocephalidae. With respect to the intermediate hosts, we can reject the ad hoc hypothesis of two intermediate hosts for T. actinioides as proposed by Allen (1973) and maintain the notion that oribatid mites remain the most probable true intermediate hosts. We support the suggestions of Kuznetsov (1966a) stating that insects of the order Psocoptera are mainly facultative hosts or carriers of parasites pertaining to the genera Avitellina and Thysaniezia. To these two genera we add also the genus Thysanosoma. The recent work of Tverdokhlebov et al. (1988) and Tishchenko (1991) demonstrated that experimental development of larval stages of A. centripunctata in Collembola and the adult stage in sheep put some questionmarks on the mode of transmission of the subfamily Thysanosomatinae. Notwithstanding the behavioural characteristics of collembols, we believe that their role intermediate hosts for anoplocephalids as improbable.

Acknowledgments. We would like to thank anonymous referees and Dr. T. Scholz for suggestions.

- AFRICA C., GARCIA E. 1935: The occurrence of *Bertiella* in man, monkey and dog in the Phillipines. Phillip. J. Sci. 56: 1-11.
- ALKOV M. 1971: Epizootiology of moneziasis in ruminants. Veterinariya 48: 60-61. (In Russian.)
- ALLEN R. 1959: Preliminary note on the larval development of the fringed tapeworm of sheep, *Thysanosoma actinioides* Diesing, 1834 in psocids (Psocoptera: Corrodentia). J. Parasitol. 45: 537-538.
- ALLEN R. 1973: The biology of *Thysanosoma actinioides*Diesing, 1834 (Cestoda: Anoplocephalidae) parasite
 of domestic and wild ruminants. Agric. Exp. Stat.
 Bull. No. 604. N. Mexico State Univ., 1-68.
- BAER J. 1927: Monografie des cestodes de la familia Anoplocephalidae. Suppl. Bull. Oc. Biol. France et Belgique 10: 1-241.
- BAER J., FAIN A. 1951a: Cestodes in Exploration in Parque National de i'Upemba. Mission G. F. de Witte, Bruxelle, 38 pp.
- BAER J., FAIN A. 1951b: Cestodes des pongolins. Bull. Soc. Neuchâtel. Sci. Nat. 78: 39-52.
- BARUTSKI J.D., HAGG M. FORSTNER A. 1986: Zur Epizootiologie von *Moniezia benedeni* (Moniez, 1879) beim Rind im Allgau. Dtsch. tierarztl. Wschr. 93; 410-413.
- BASHKIROVA E. 1941: Study of biology of *Anoplocephala* perfoliata Goeze, 1782 tapeworm helminth of the horse. C.R. Acad. Sci. USSR . 30: 576-578.
- BEVERIDGE I. 1994: Family Anoplocephalidae Cholodkovsky, 1902. In: L. Khalil, A. Jones and R. Bray (Eds.). Keys to the Cestode Parasites of Vertebrates. CAB International, Wallingford, UK, pp. 315-366.
- BLANCHARD R. 1849: Reserches sur l'organization des vers. Ann. Sc. Nat. Zool. 11: 106-202.
- BLANCHARD R. 1891a: Notices helminthologiques (2). Sur les teniades a ventouses armées. Mem. Soc. Zool. France 4: 420-489.
- BLANCHARD R. 1891b: Sur les helminthei des primates anthropoides. Mem. Soc. Zool. France. 4: 186-196.
- CHOLODKOWKY N. 1902: Contributions a la connaissance des tenias de ruminants. Arch. Parasitol. 6: 43-148.
- DENEGRI G. 1985a: Consideraciones sobre sistemática y distribución geográfica del género *Bertiella* Stiles & Hassall, 1902 (Cestoda Anoplocephalidae) en el hombre y en primates no humanos. Neotrópica 31: 55-63
- DENEGRI G. 1985b: Desarrollo experimental de *Bertiella mucronata* Meyner, 1895 (Cestoda Anoplocephalidae) de origen humano en su huésped intermediario. Zbt. Vet. Med. B. 32: 498-504.
- DENEGRI G. 1987: Estudio sobre la biología de los cestodes anoplocefálidos que parasitan a rumiantes domésticos. Tesis de Doctorado. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 484: 1-56.
- DENEGRI G. 1990: Cestodes de la familia Anoplocephalidae Cholodkowsky, 1902 en la República Argentina. Vet. Arg. 64: 248-256.

- DENEGRI G. 1991: Definición de un Programa de Investigación Científica en Parasitología: acerca de la biología de los cestodes de la familia Anoplocephalidae. Tesis de Licenciatura en Filosofía (orientación Filosofía de la Ciencia), Departamento de Filosofía, Universidad Nacional de La Plata, 64 pp.
- DENEGRI G. 1993: Review of oribatid mites as intermediate hosts of tapeworms of the Anoplocephalidae. Exp. Appl. Acarol. 17: 567-580.
- DENEGRI G. 1996: La metodología de los programas de investigación científica aplicada a la estructuración de un marco teórico-metodológico en parasitología. Rev. Asoc. Cienc, Nat. Litoral. 27: 1-10.
- DENEGRI G. 1997. Una propuesta teórico-metodológica en Parasitología. Editorial de la Universidad Nacional de La Plata, Argentina, 75 pp.
- DENEGRI G., ALZUET A. 1992: Seasonal variation of oribatid mites (Acarina) populations and its relationship to sheep cestodiasis in Argentina. Vet. Parasitol. 42: 157-161.
- DENEGRI G., PEREZ-SERRANO J. 1997: Bertielliasis in man: a review of cases. Rev. Med. Trop. S. Paulo. Vol. 39: 123-127
- DENEGRI G., YANNARELLA F., LED J. 1983: Zygoribatula elongata Hammer, 1961 (Acarina-Oribatulidae) nuevo huésped intermediario experimental de Moniezia expansa y Helictometra giardi (Cestoda -Anoplocephalidae) en la Argentina. Rev. Med. Vet. 64: 348-352.
- DOUTHITT H. 1915: Studies on the cestode family Anoplocephalidae. Illin. Biol. Monogr. 1: 1-96.
- FELDMAN R., DENEGRI G., AVOLIO J., CANTÚ N. 1983: Nuevo caso humano de teniasis por *Bertiella mucronata* Meyner, 1895 (Cestoda-Anoplocephalidae) en la Argentina. I. Diagnóstico y tratamiento. Acta Bioq. Clín. Latinoam. 17: 571-578.
- FUHRMANN O. 1907: Die Systematik des Ordung der Cyclophyllidea. Zool. Anz. 32: 289-297.
- GRABER M., GRUVEL J. 1964: Note preliminaire concernant a transmission de *Stilesia globipunctata* (Rivolta, 1874) du mouton par divers acariens oribates. Rev. Elev. Med. Vet. Pays. Trop 17: 467-476.
- GRABER M., GRUVEL J. 1967: Les vecteurs de *Stilesia* globipunctata (Rivolta, 1874) du mouton. Rev. Elev. Med. Vet. Pays. Trop. 20: 261-271.
- KASSAI T., MAHUNKA S. 1965: Studies on tapeworms in ruminants. II. Oribatids as intermediate hosts of *Moniezia* spp. Acta Vet. Hung, 15: 227-249.
- KATES K, RUNKEL C. 1948: Observations on oribatid mite vectors of *Moniezia expansa* on pastures, with a report of several new vectors from the United Stated. Proc. Helminthol. Soc. Wash. 15: 18-33.
- KULIEV K. 1963: Observations on the development of Anoplocephala perfoliata (Goeze, 1782) in an intermediate host (oribatid mites). In: Problemy Parazitologii. Trudy IV. Nauchnoi Konferentsii

- Parasitologov Ukrain. SSR, pp. 210-211. (In Russian.)
- KUZNETSOV M. 1959: The fauna of oribatid mites and their seasonal dynamics under conditions of the lower Volga steppes. Review of the literature. Trudy VIGIS, pp. 111-124. (In Russian.)
- KUZNETSOV M. 1962: Concerning intermediate host that are causal agents of *Thysaniezia* and *Avitellina* on sheep. Veterinariya 39: 46-47. (In Russian.)
- KUZNETSOV M. 1966a: On the intermediate host species of *Avitellina* and *Thysaniezia* of sheep. Trudy VIGIS 12: 25-37. (In Russian.)
- KUZNETSOV M. 1966b: Susceptibility of oribatids to oncospheres of *Moniezia expansa* and *M. benedeni* and the role of various mite species in the epizoootiology of monieziasis. Trudy VIGIS 12: 97-105. (in Russian.)
- KUZNETSOV M. 1970: Development times of *Moniezia* cysticercoids in *Scheloribates laevigatus* under natural conditions. In: Bulanova-Zakhvatkina (Ed.), Oribatids and Their Role in the Processes of Soil Formation. Akad. Nauk. Litovskoi SSR, Vilnius, pp. 223-227.
- LAKATOS I. 1978: The Methodology of Scientific Research Programmes. In: J. Worral and G. Curie (Eds.), Philosophical Papers. Vol. 1. Cambridge University Press, Cambridge, 283 pp.
- LED J., YANNARELLA F., MANNAZA J., DENEGRI G. 1979: Acción del albendazole sobre *Moniezia expansa y Thysanosoma actinioides*. Gac. Vet. 41: 363-366.
- LED J., YANNARELLA F., MANNAZA J., DENEGRI G. 1980: Nuevo ensayo de la acción del albendazole sobre *Thysanosoma actinioides*. Gac. Vet. 42: 202-204.
- LIN Y. HO Y., SUNG Y. 1975: Studies on the epidemiology of monieziasis (*Moniezia expansa*) and the biology of its natural vectors. Acta Zool. Sin. 21: 141-152.
- LOPEZ-NEYRA C. R. 1954: Anoplocephalidae. Rev. Ibér. Parasitol. 14: 13-130, 225-290, 303-396.
- LOPEZ-NEYRA C. R. 1955: Anoplocephalidae. Rev. Ibér. Parasitol. 15: 33-84.
- MEGGITT F. 1927: Report on a collection of Cestoda mainly from Egypt. Parasitology 19: 314-327.
- MIGLIANI A., BALI H. 1990: A note on the vectors of *Thy-saniezia giardi* in India. VII ICOPA, Paris, August 1990, Abstracts, p. 1182.
- MOLA P. 1928: Per una nueva classifica des cestodi, Sassari, 22 pp.
- MONIEZ R. 1891: Notes sur les Helminthes. Rev. Biol. Nord France 4: 22-34, 65-79, 108-118.
- NADAKAL A. 1960: Observations on the life cycle of *Avitellina centripunctata* (Rivolta, 1874) an anoplocephaline cestode from sheep and goat. J. Parasitol. 46: 12.
- NARSAPUR V. 1974: Biological cycle of *Avitellina lahorea*. Ind. Vet. J. 51: 54-56.
- NARSAPUR V., PROKOPIČ J. 1979: The influence of temperature on the development of *Moniezia expansa* (Rudolphi, 1810) in oribatid mites. Folia Parasitol. 26: 239-243.

- NAZAROVA S. 1963: Vertical migration of oribatid intermediate hosts of anoplocephalidae. Mater. Nauch. Konf. Vses. Obshch. Gelmintol., pp. 18-20 (In Russian.)
- POTEMKINA V. 1944: Contribution to the study of *Thysaniezia ovilla* (Rivolta, 1878) a tapeworm parasites of ruminant. C.R. Acad. Sci. USSR. 43: 43-44. (In Russian.)
- RAJSKI A. 1961: Quantitative occurrence of the chief intermediate hosts of *Moniezia expansa* Rud. in the vicinity of Poznań. Wiad. Parazytol. 7: 39-42.
- RAUSCH R. 1976: The genera *Paranoplocephala* Lühe, 1910 and *Anoplocephaloides* Baer, 1923. Ann. Parasitol. Hum. Comp. 51: 513-562.
- ROMERO J., DENEGRI G., NUIN, C., VALERA A., ESPI-NOSA G. 1989: Experimental reproduction of cysticercoids from *Anoplocephala perfoliata* Blanchard, 1848 in *Scheloribates* spp. Berlese, 1908 (Acarina-Oribatulidae). J. Vet. Med. B. 36: 442-446.
- SCHUSTER R. 1991: Morphometrische Analyse einer Anoplocephala perfoliata population. Angew. Parasitol. 32: 105-111.
- SENGBUSCH H. 1977: Review of oribatid mites-anoplocephalan tapeworm relationship (Acari, Oribatei: Cestoda, Anoplocephalidae). In: D.L. Dindal (Ed.), Biology of Oribatid Mites. State Univ. N. York, College of Environmental Soc. and Forestry, Syracuse, N.Y., pp. 87-102.
- SHALDIBINA E. 1953: Infection of various species of Oribatidae and their role in the epizootiology of monieziasis on pastures in the Gorkovskoye region. In: Papers on Helminthology presented to Acad. K. I. Skryabin on his 75th birthday, Izdatelstvo Akad. Nauch. SSSR, Moscow, pp. 740-746. (In Russian.)
- SKRJABIN K. I. 1933: Au sujet d'un nouveau remaniement de la systematique de la familia des Anoplocephalidae Cholodk., 1902. Bull. Soc. Zool. France 58: 84-86.
- SOLDATOVA A. 1950: Biology and ecology of Oribatidae and their importance in the epizootiology of anoplocephalid infections in domestic animals. Trudy GELAN SSSR 3: 285-289. (In Russian.)
- SOULSBY E. J. L. 1982: Helminths, Arthropods and Protozoa of Domesticated Animals. Helminths, Eucestoda. Bailliere Tindall, London, 823 pp.
- SPASSKII A. 1950: An attempt to reconstruct the Anoplocephalidae on a phylogenetic basis. Trudy GELAN SSSR 3: 80-86. (In Russian.)
- SPASSKII A. 1961: Anoplocephalata. Essentials of Cestodology. Israel Program for Scientific Translations, Jerusalem, 783 pp.
- STILES C., HASSALL A. 1893: A revision of the adult cestodes of cattle, sheep and allied animals. U.S. Dept. Agric. Bureau of Animal Industry. Bull., No. 4.
- STILES C., HASSALL A. 1902: *Bertiella* new name for this cestode genus *Bertia* Blanchard, 1891, Science 16: 402.
- STUNKARD H. 1937: The life cycle of *Moniezia expansa*. Science. 86: 312.

- STUNKARD H. 1939: The development of *Moniezia expansa* in the intermediate host. Parasitology 30: 491-501.
- STUNKARD H. 1940: The morphology and life history of cestode *Bertiella studeri*. Am. J. Trop. Med. 20: 305-332.
- STUNKARD H. 1961: Cycloskrjabinia taborensis (Loewen, 1934), a cestode from the red bat Lasiurus borealis (Mueller, 1776) and review of the family Anoplocephalidae. J. Parasitol. 47: 847-856.
- SVADZHYAN P. 1960: Susceptibility of oribatid mites to infection with Avitellina centripunctata and Thysaniezia giardi. Tezisy Dokl. Nauchnoi Konf. Vses. Obshch. Gelm, Moscow, December 15-20, 1959, pp. 126-127. (In Russian.)
- SVADZHYAN P. 1963: Development of *Thysaniezia giardi* (Moniez, 1879) in the bodies of insects of the order of psocids (Psocoptera). Dokl. Akad. Nauk. Armenskoi USSR 36: 303-306. (In Russian.)
- TENORA F. 1976: Tapeworms of the family Anoplocephalidae Cholod., 1902. Evolutionary implications. Acta Sci: Nat. Brno 10: 1-37.
- THEILER G. 1924: On the classification on the cestode genus *Moniezia* (Blanchard, 1891). Ann. Trop. Med. Parasitol. 18: 109-123.

- TISHCHENKO L. 1991: Ecological and epidemiological bases for the prophylaxis of Avitellina infection in sheep. Vestnik Selskokhozyaistvennoi Nauki (Moskva) 8: 132-137. (In Russian.)
- TVERDOKHLEBOV P., ROMANENKO L. TISHCHENKO L. 1988: Study of the life cycle of *Avitellina centri-punctata*. Veterinariya 5: 33-35. (In Russian.)
- WARDLE R., MCLEOD A., RADINOVSKY S. 1974: Advances in the Zoology of Tapeworms, 1950-1970. University of Minnesota Press, xvi + 275 pp.
- XIAO L., HERD R. 1992: Infectivity of Moniezia benedeni and Moniezia expansa to oribatid mites from Ohio and Georgia. Vet. Parasitol. 45: 101-110.
- YAMAGUTI S. 1959: Systema Helminthum. Vol. II. The Cestodes of Vertebrates. New York & London: Interscience Publishers, Inc., vii + 860 pp.
- YANNARELLA F., LED J., DENEGRI G. 1978: Contribución al conocimiento de la biología de los anoplocefálidos que parasitan a los ovinos. Rosembusch Tec. 6: 1-10.
- ZHALTSANOVA D., MARDAEV D., SUMANOV V. 1977. Anoplocephalates and anoplocephalate infections of ruminants in the Buryat ASSR. Trudy Buryat. Inst. Estestvennykh Nauk. 18: 19-23. (In Russian.)

Received 19 August 1996

Accepted 14 May 1997