An annotated list of parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda and Nematoda) collected in groupers (Serranidae, Epinephelinae) in New Caledonia emphasizes parasite biodiversity in coral reef fish

Jean-Lou Justine1,2, Ian Beveridge3, Geoffrey A. Boxshall4, Rod A. Bray4, František Moravec5, Jean-Paul Trilles6 and Ian D. Whittington7

1 UMR 7138 Systématic, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, 75231 Paris cedex 05, France;
2 Aquarium des Lagons, BP 8185, 98807 Nouméa, Nouvelle-Calédonie;
3 Department of Veterinary Science, University of Melbourne, Veterinary Clinical Centre, Werribee 3030, Victoria, Australia;
4 Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK;
5 Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic;
6 Équipe Adaptation écophysiologique et Ontogénese, UMR 5119 (CNRS-UM2-IFREMER), Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 05, France;
7 Monogenean Research Laboratory, The South Australian Museum, Adelaide, & Marine Parasitology Laboratory, & Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, North Terrace, Adelaide, South Australia, Australia

Abstract: Over a 7-year period, parasites have been collected from 28 species of groupers (Serranidae, Epinephelinae) in the waters off New Caledonia. Host-parasite and parasite-host lists are provided, with a total of 337 host-parasite combinations, including 146 parasite identifications at the species level. Results are included for isopods (5 species), copepods (19), monogeneans (56), digeneans (28), cestodes (12), and nematodes (12). When results are restricted to those 14 fish species for which more than five specimens were examined and to parasites identified at the species level, 109 host-parasite combinations were recorded, with 63 different species, of which monogeneans account for half (32 species), and an average of 4.5 parasite species per fish species. Digenean records were compared for 16 fish species shared with the study of Cribb et al. (2002); based on a total of 90 parasite records identified at the species level, New Caledonia has 17 new records and only seven species were already known from other locations. We hypothesize that the present results represent only a small part of the actual biodiversity, and we predict a biodiversity of 10 different parasite species and 30 host-parasite combinations per serranid. A comparison with a study on Heron Island (Queensland, Australia) by Lester and Sewell (1989) was attempted: of the four species of fish in common and in a total of 91 host-parasite combinations, only six parasites identified at the species level were shared. This suggests strongly that insufficient sampling impairs proper biogeographical or ecological comparisons. Probably only 3% of the parasite species of coral reef fish are already known in New Caledonia.

Keywords: Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda, Serranidae, Epinephelinae, parasite biodiversity, coral reef, New Caledonia
In this paper, we present results obtained on a single subfamily of coral reef fishes, the groupers (Serranidae, Epinephelinae) in an area centred around Nouméa, New Caledonia, South Pacific. The groupers are fish of considerable economic importance, especially in the Indo-Pacific (Ottolenghi et al. 2004) and diseases, including parasites, may threaten attempts to introduce these species to systems of aquaculture (Bondad-Reantaso et al. 2002).

Results are presented as a host-parasite list (Appendix 1), in which all parasites of a given host species are listed, and as a parasite-host list (Appendix 2), in which all hosts are listed for each parasite species. For possible future verification of the data presented, we give a list of specimens deposited in various international collections with their accession numbers (Appendix 3); we insist on the need for deposition of material for any parasitological study, the utility of which has been demonstrated in many cases (e.g. Hoberg et al. 2009, Justine et al. 2009a).

The current dataset includes 28 species of groupers. It is not easy to express the number of parasite species found because of the many cases of unidentified species: these can represent a single quasi-generalist species or a number of cryptic species. If we minimize the numbers by counting all cases of unidentified species as a single ‘species’, our results include 134 parasite ‘species’ (5 Isopoda, 19 Copepoda, 56 Monogenea, 28 Digenea, 12 Cestoda, 12 Nematoda, 1 Acanthocephala and 1 Turbellaria). The number of host-parasite combinations recorded (i.e. a parasite associated with a host) is 337, including 146 in which the parasite was identified at the species level.

We attempted to compare the results obtained here with comparable data sets available in the literature. It appeared that very few such data sets are available. Finally, we used only the general survey on parasites of Heron Island (Lester and Sewell 1989), a small coral cay in the southern Great Barrier Reef off Queensland, Australia (23°26′S, 151°54′E) at the same latitude and approximately 1,500 km West of New Caledonia. For brevity, no attempts were made to update this general paper with more recent literature, and no detailed attempt was made to discuss, for each fish or for each parasite, which parasites and which host records have been found elsewhere. This has been done, however, for Epinephelus malabaricus and Ep. cyanopodus (Justine and Sigura 2007, Sigura and Justine 2008).

MATERIALS AND METHODS

Collection of hosts
Over a 7-year period (2003–2009), fish were collected, generally by fishing with hook and line, sometimes by spear-fishing, and occasionally from the fish market of Nouméa. All specimens come from within the lagoon, the barrier reef or the outer reef slope in a radius of ca. 30 km around Nouméa. Live fish were kept in a container with seawater and immediately brought back to the laboratory. All fish were measured, weighed and photographed. A unique number (JNC) was assigned to each fish. The parasitological material was then assigned a corresponding JNC number linked to the respective fish host. Measurements of hosts (fork length, FL, in mm; weight, W, in g) were taken for possible future comparison of parasite prevalence and host age in other localities and because the monogenean fauna has been shown to change according to fish size (Hinsinger and Justine 2006a, Sigura and Justine 2008). However, for brevity these data are not given in this paper. Host names have been updated using FishBase (Froese and Pauly 2009).

Collection of parasites
Basically, we used two methods, targeting two different sets of organs, here designated as the ‘gills’ and the ‘abdominal organs’. The two methods, ‘gills’ and ‘abdominal organs’ were sometimes used on the same fish, but often the fish were processed only with one method. There are several reasons for this; often, a given grouper species was examined for gill monogeneans (with other gill parasites collected incidentally) until the monogeneans were collected and described, and the collection of monogeneans was a time-consuming task. The detailed study of other organs was not practical; later when the monogeneans were known and described, the same fish species was processed in detail for ‘abdominal organs’, but the gills were not carefully examined for monogeneans. Also, the examination method was adapted according to the colleagues visiting for collection of their particular group of parasites; in these cases, this group was collected as a priority and other groups were collected only partially, or not at all. In the host-parasite list, we counted separately the total number of fish collected, and the number of fish examined for ‘gills’ and for the ‘abdominal organs’; ideally, the latter two numbers should equal the first, but they rarely do. These numbers are however important in understanding the significance of the results, especially when few parasites were collected from a few fish examined.

For the ‘gill method’, the gills from both sides were removed one by one by cutting them at their extremities and they were examined immediately in seawater. Parasites were collected under a binocular microscope. Monogeneans were removed alive with fine needles and immediately prepared for slides (Justine 2005a). Copepods and isopods were removed with fine pincers or with the help of a fine needle, and immediately fixed in 70% ethanol. Live gnathiid isopod larvae were sometimes kept in seawater in an attempt to obtain adults (Smit et al. 2003), but without significant results.

For the ‘abdominal organ method’, the body cavity was opened and all organs were removed. The liver and gonads were separated. The stomach, caeca and intestine were then opened longitudinally with scissors. For about half of the fish (2003–2006), the digestive tract was then examined under a binocular microscope and the parasites were removed with fine pincers or a pipette. For the other half, we used the ‘gut wash method’ (Cribb and Bray 2010) in saline (1/4 seawater, 3/4 tap water); this method proved to be more effective and faster than the direct examination method. The gonads were often, but not always, examined under a binocular microscope and were macerated in a small quantity of saline. Cysts of trypanorhynch cestodes were carefully opened with two fine pincers in saline under a binocular microscope, and the living larvae were immediately flattened between two slides or pipetted in boiling saline, to obtain everted tentacles. Digeneans and cestodes from the intestinal lumen were pipetted alive in near-boiling saline. Copepods and isopods were examined and dissected according to routine meth-
ods (Boxshall et al. 2008, Trilles and Justine 2010). Permanent slides were made from monogeneans, digeneans and cestodes according to routine methods (Justine 2005a, Bray and Justine 2006a, Beveridge et al. 2007, Kuchta et al. 2009a). Nematodes were fixed alive in near-boiling 4% formalin, or sometimes in boiling 70% ethanol or near-boiling saline, and later examined in glycerine; specimens were also prepared for scanning electron microscopy (Moravec and Justine 2005). Tetraphyllidean cestode larvae, which are impossible to identify morphologically, were generally fixed in near-boiling saline and kept in absolute ethanol for possible future molecular analysis.

Several organs were almost never examined. For possible comparison with other geographic localities or similar future studies in the same location, it is important to be explicit in describing the flaws in our sampling methods. Parts of the fish almost never examined include the branchiostegal membranes, the fins and the general surface of the body; this certainly decreased our findings of capsalid monogeneans and philometrid nematodes. The heart and blood system were almost never examined, and thus no aporocotylid digenean was recorded. The kidneys, the liver, the general muscle mass and the bones were not examined. The swim bladder was only occasionally examined. The nasal cavities were not opened. No metacecariae were sought in the muscle mass. Anisakid nematode larvae, which are often numerous on the surface of all internal organs, were only occasionally collected. The eyes and the orbits were examined in certain cases, but certainly not extensively; however, several philometrid nematodes were found in these organs. Only parasitic crustaceans and helminths are recorded here, no attempt was made to seek microscopic protistan or myxozoan parasites. The absence in the present results of several parasitic groups which are usually found in the neglected organs cited above is thus not significant. However, the absence of leeches (Hirudinea) in this study of serranids is significant because these parasites are easily found and were efficiently collected, using the same methods, in other families of fishes. The absence of copepods on the skin is also significant, because such parasites are easily spotted at the time of catch and were collected on fishes of other families.

The number of parasite specimens collected has generally been recorded, but for brevity is not mentioned in this study, which focuses on species-level biodiversity.

Identification of parasites

The specimens, generally collected by J.-L. Justine and his team of students, and sometimes by visiting colleagues, were forwarded to their respective specialists: I. Beveridge (trypanorhynch cestodes), G.A. Boxshall (copepods), R.A. Bray (digeneans), F. Moravec (nematodes), J.-P. Trilles (isopods), I.D. Whittington (capsalid monogeneans) and J.-L. Justine (other monogeneans). The names of cestode orders follow Khalili et al. (1994), updated by Kuchta et al. (2008) and Healy et al. (2009). Monogenean genera (Halotremena, etc.) sometimes included in the Dactylogyridae are here considered as members of the Ancyrocephalidae. Many specimens have been deposited in recognized collections (Appendix 3); other specimens under study are still in the collections of the various authors but will be eventually deposited in the collection of the Muséum national d’Histoire naturelle (MNHN) and/or in other recognized, curated collections.

Many specimens were not identified to the species level, even in groups in which this is theoretically possible. Publication of this list could be delayed for several years to await better and more comprehensive accuracy; however, it was considered that enough significant data had already been accumulated to warrant publication. Data presented here were compiled in March 2009; results which were not in press at this date but are now published (Trilles and Justine 2010) have not been included.

Abbreviations

The following abbreviations are used in Tables and Appendices.

For all: Unid: Unidentified family.

Isop: Isopoda; Families: Aegi: Aegiidae; Cora: Corallanidae; Cymo: Cymothoida; Gnat: Gnathiidae.

Cope: Copepoda; Families: Cali: Caligidae; Diss: Dissonidae; Hats: Hatcheskiidae; Lern: Lernantronidae; Ler: Lernaeopodidae; Penn: Pennellidae; Siph: Siphonostomidae.

Mono: Monogenea; Families: Ancy: Ancyrocephalidae; Caps: Capsalidae; Dipl: Diplectanidae.

Dige: Digenea; Families: Acan: Acanthostomidae; Apor: Aporocotylidae; Bive: Bivesculidae; Buce: Bucephalidae; Dero: Derogenidae; Didy: Didymozoidae; Fell: Felloidostomatidae; Gorg: Gorgoderidae; Hemi: Hemiriidae; Hiru: Hirudinellidae; Lepo: Lepocreadiidae; Opec: Opecoelidae.

Cest: Unclassified Cestoda.

Tryp: Cestoda Trypanorhyncha; Families: Laci: Lactistorhynchidae; Otob: Otobothriidae; Pseu: Pseudobothriidae.

Both: Cestoda Bothriocephalidea; Family: Both: Bothrioccephalidae.

Tet: Cestoda Tetraphyllidea (no family identified).

Nema: Nematoda; Families: Anis: Anisakidae; Cama: Camalanidae; Capi: Capillaridae; Cucu: Cucullanidae; Phil: Philometridae.

Acantho: Acanthocephala (no family identified).

Abbreviation in text and Tables: NHR: New host record; NGR: New geographical record. HPC: Host-parasite combination; SLIP: Species-level identified parasite; SLIP-HPC: Species-level identified parasite-host-parasite combination.

Institutions: MNHN, Muséum national d’Histoire Naturelle, Paris, France; BMNH, Natural History Museum, London, United Kingdom; USNPC, United States National Parasite Collection, Beltsville, USA; SAMA AHC, South Australian Museum Adelaide, Australian Helminthological Collection, Adelaide, Australia; HCIP, Helminthological Collection, Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic; SLZU, School of Life Sciences, Zhongshan University (Sun Yat-sen University), Guangzhou, China; ZRC, Zoological Collection of the Raffles Museum, Singapore; QM, Queensland Museum, Brisbane, Australia.

RESULTS AND DISCUSSION

The results are presented as a host-parasite list (Appendix 1), a parasite-host list (Appendix 2) and a list of material deposited (Appendix 3). The number of host-parasite combinations found in each fish species is given in Table 1.

Comments on each group

In these brief comments, we discuss the new records, and analyse our findings from the perspective of the numerical evaluation of biodiversity. In other words, we try to understand the significance of the number of species found in terms of actual parasite biodiversity.
Fish. Twenty-eight species of groupers were examined; they represent 68% of the 41 species known in New Caledonia (Fricke and Kulbici 2007). However, several species mentioned in the ichthyological literature are rare and will probably escape parasitological investigation. In our study, a few large species were studied only on very small numbers of individuals, such as *Ep. coioides* (1), *Ep. fuscoguttatus* (2) and *Ep. malabaricus* (2); no doubt, better sampling would reveal significant additional numbers of parasite species. The giant species *Epinephelus lanceolatus* (Bloch, 1790) was not studied. There are 159 species of groupers in the world (Heemstra and Randell 1993) so the 28 species investigated represent 18% of the global fauna.

Isopoda. All three identified adult isopod species found belong to the family Corallanidae, and they were already known from throughout the Indo-West Pacific from a variety of localities (Delaney 1989) and hosts.

*Argathona rhinoceros* is already known from *Tetradon leopardus*, *Ep. chlorostigma*, *Fr. tauvina*, *Va. louti*, *Ep. malabaricus*, and *Pl. leopardus* (Delaney 1989), and on *Ep. coioides* and *Ep. fuscoguttatus* in Indonesia (W. Thorsten, pers. comm.). It was found again on the gills of *Ep. malabaricus* and *Pl. leopardus* in New Caledonia. *Ep. coioides* and *Ep. cyanopodus* are new host records. New Caledonia is a new geographical record.

*Argathona macronema* is already known from *Ep. tauvina*, *Diagramma cinerascens*, *Pseudolabras* sp. [sic]. *Trachichtodes affinis* [sic], *Cromileptes altivelis*, *Lutjanus argentimaculatus*, *Pl. maculatus*, and *Pl. leopardus* (Delaney 1989), on the eye of a sea turtle in Kenya (Monod 1975) and in an unidentified fish in Indonesia (W. Thorsten, pers. comm.); it is also known from coral reef rock, coral rubble and sand (Delaney 1989). It was found again on the gills of *Pl. leopardus* in New Caledonia. *Pl. laevis* is a new host record. New Caledonia is a new geographical record.

*Lanocira zeylanica* is already known from throughout the Indo-West Pacific, but no hosts have been indicated. The species has been collected from sponges (Monod 1933) and from corals (Monod 1933, Jones 1982). Delaney (1989) wrote “there is only one record (this study) of an unidentified *Lanocira* species collected as temporary parasite of a fish (*Variofa louti)*”. Our finding on the body of *Ce. boenak* is a new host record, and New Caledonia is a new geographical record.

All larval isopods found belonged to the family Gnathiididae. They were found on 12 of the 28 grouper species examined, but it is likely that all species are hosts for them. These larvae cannot be identified at the species level, and some attempts to obtain the adults from praniza larvae did not succeed. The number of gnathiid species represented in these findings could not be evaluated, but it is likely that more than a single species are involved.

Copepoda. Nineteen ‘species’ of copepods were recorded from the gills, but this number is reduced by siphonostomatoid and pennellid larvae which were each counted as a single ‘species’. Seventeen species of adults were found which belong to the four families Caligidae (5 species), Dissonidae (1 species), Lernanthropidae (1 species) and mainly the Hatschekiidae (10 species). The host-parasite relationships of *Dissonus manteri* have been discussed (Boxshall et al. 2008).

Numerous specimens of hatschekiids were collected and only two described species could be identified, the other specimens representing eight new species (Fig. 1B–H). *Hatschekia plectropomi* is a distinctive species originally described from *Pl. leopardus* in Australian waters (Ho and Dojiri 1978). *Pl. laevis* is a new host record for this parasite. *Hatschekia cernae* (Fig. 1A) was originally described from *Ep. aeneus* in the Mediterranean (Goggi 1905), and was subsequently reported from *Ep. fasciatus* (as *Ep. alexandrinus*) and *Ep. marginatus* (as *Ep. gigas*) off the West African coast (Nunes-Ruivo 1954, Capart 1959 – as *Hatschekia epinepheli*). It was first reported from the Pacific from *Epinephelus* sp. off Okinawa (Shino 1957). The record from *Ep. morrhua* is new. There is clearly a radiation of *Hatschekia* within the groupers, and our evaluation of copepod biodiversity is probably an underestimate of the actual situation. The undescribed *Hatschekia* species include a generalist species, *Hatschekia* sp. 1 (Fig. 1B), found on the gills of eight species of hosts, and seven strictly-specific species (Fig. 1C–H) each found only on one host (six cases) or two hosts (one case). It is not unlikely that most species of groupers have their own *Hatschekia* species, sometimes in addition to the generalist species.

All species of the genus *Sagum*, with the exception of *Sagum texanum* and *S. vespertilio*, are specific to serranids of the genus *Epinephelus*. *Sagum epinepheli* was originally described from Japanese waters on *Ep. akaara* (Yamaguti and Yamasu 1960) and subsequently reported from *Epinephelus* sp. off Kerala, India (Pillai and Sebastian 1967). In our samples it occurred on *Pl. leopardus* and five species of *Epinephelus*, all of which are new host records.

*Caligus asymmetricus* is primarily a parasite of scorpionfishes, and has been reported from more than ten host species taken across the Indo-Pacific (Kabata 1965, Lewis 1967, Cressey and Cressey 1980). It is rarely found on non-scorpionfish hosts and our report is a new host record.

*Lepeopethyris plectropomi* was first discovered on *Ep. maculatus* in Madagascar (Nunes-Ruivo and Fourmau-noir 1956) and was found again in Australia waters on the same fish (Kabata 1966) and on *Pl. leopardus* and *Ep. quoyanus* (as *Ep. megachir*) (Ho and Dojiri 1977). Our records of this parasite from *Ep. cyanopodus* and *Ep. malabaricus* are both new. However, we did not find *L. plectropomi* on *Ep. maculatus*; instead, this host, together
with Ep. coeruleopunctatus, harboured L. epinepheli, first described from Australian waters on Ce. cyanostigma, Ep. cyanopodus (as Ep. hoedti) and Ep. quoyanus (as Ep. gilberti) (Ho and Dojiri 1977).

No copepod was found on the skin of the serranids examined, although these are easily seen and collected on other families of fish.

**Monogenea.** Fifty-six ‘species’ of monogeneans were recorded. This number is an underestimate as groups of Haliotrema and Pseudorhabdosynochus were counted each as one ‘species’ but probably represent about 20 different species. Nevertheless, the monogeneans represent the richest group of parasites found in serranids. Only three families are represented: the Ankyrocephalidae, Capsalidae and Diplectanidae.

The Ankyrocephalidae includes many species reported here as Haliotrema but which might well represent an independent genus, characterised by tubular male copulatory organs. These species have not been studied in detail but it is likely that a significant number of different species is present.

The Capsalidae includes seven ‘species’ belonging to at least seven genera. Additional work will be needed, both at the morphological and molecular level, to characterize all the species involved (Perkins et al. 2009). It is also important to mention that the biodiversity of capsalids described here is restricted to the species from the gills; species from other sites such as the branchiostegal membranes, fins and skins were generally not collected, and would probably at least double the number of capsalid species found.

---

**Fig. 1.** Species of Hatschekia. A – Hatschekia cernae Goggio, 1905; B – Hatschekia sp. 1 (generalist species); C – Hatschekia sp. 11; D – Hatschekia sp. 5; E – Hatschekia sp. 10; F – Hatschekia sp. 4; G – Hatschekia sp. 8; H – Hatschekia sp. 2. All drawn to same scale. Scale bar = 1.0 mm.
The Diplectanidae represents the major monogenean family in the serranids, with four genera, *Pseudorhabdosynochus* (33 identified species), *Diplectanum* (4 identified species), *Laticola* (2 species) and *Echinoplectanum* (5 species). Species from groupers included in *Diplectanum* have been only provisionally attributed to the genus and probably deserve their own genus (Justine 2007b,c, 2008a, Justine and Sigura 2007). Species of *Echinoplectanum* are found only in the coralgroupers (*Plectropomus* spp.) and never in the other groupers (Justine and Euzet 2006). Although the genus *Pseudorhabdosynochus* is the most species-rich of the diplectanids (Justine 2007b), our results underestimate diplectanid biodiversity because at least a dozen undescribed *Pseudorhabdosynochus* species were found (Appendices 1, 2). We found that some groupers have an outstanding monogenean biodiversity, with six to eight species of *Pseudorhabdosynochus* found in *Ep. cyanopodus*, *Ep. malabaricus* and *Ep. maculatus* (Appendix 1). In total, 42 diplectanids were identified from the fish sampled in New Caledonia (Appendix 2); however, when all of the undescribed *Pseudorhabdosynochus* found here have been described, we believe that there will probably be 60 species known from the groupers off New Caledonia.

No *Lamellodiscus* spp. were found in the serranids examined; this suggests that records of members of this diplectanid genus in groupers are probably accidental (Justine 2009, Justine and Briand 2010). All fish examined here were taken from the wild and were not kept in tanks with other fish, a possible cause of accidental monogenean contamination (Justine 2009).

A significant absence in serranids was the polyopisthocotylean monogeneans, specimens of which were not found in our study. *Digenea.* Twenty-eight ‘species’ of digeneans were recorded, but this number is greatly reduced by juvenile and adult didymozoids being counted as a single ‘species’. In contrast to all other digeneans cited in this study, which inhabit the lumen of the digestive system, the didymozoids are adults in closed cysts and have ‘larvae’ (or rather ‘juveniles’) which are found in the lumen of the digestive tract and occasionally on the gills. Adult didymozoids probably show a certain degree of host specificity, but all species recorded here in serranids have tangled filiform bodies which are extremely time-consuming to prepare for slides; it is likely that several species are present, but specimens have not been thoroughly examined to as-

### Table 1. Number of host-parasite combinations (HPCs) found in 28 species of serranids in New Caledonia.

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Number of fish examined</th>
<th>Host-parasite combinations</th>
<th>Identifications at species level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total number</td>
<td>For gill parasites</td>
<td>For abdominal organ parasites</td>
</tr>
<tr>
<td><em>Anoperodon leucogrammicus</em></td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td><em>Cephalopholis aurantia × spiloparaea</em></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><em>Cephalopholis argus</em></td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td><em>Cephalopholis boenak</em></td>
<td>59</td>
<td>42</td>
<td>18</td>
</tr>
<tr>
<td><em>Cephalopholis miniata</em></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td><em>Cephalopholis sonneratii</em></td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td><em>Cephalopholis spiloparaea</em></td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td><em>Cephalopholis urodeta</em></td>
<td>38</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td><em>Cromileptes altivelis</em></td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td><em>Epinephelus areolatus</em></td>
<td>14</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td><em>Epinephelus chlorostigma</em></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><em>Epinephelus coeruleopunctatus</em></td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td><em>Epinephelus coioides</em></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><em>Epinephelus cyanopodus</em></td>
<td>25</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td><em>Epinephelus fasciantis</em></td>
<td>92</td>
<td>45</td>
<td>61</td>
</tr>
<tr>
<td><em>Epinephelus fascioguttatus</em></td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td><em>Epinephelus howlandi</em></td>
<td>24</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td><em>Epinephelus maculatus</em></td>
<td>62</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td><em>Epinephelus malabaricus</em></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td><em>Epinephelus merra</em></td>
<td>64</td>
<td>58</td>
<td>18</td>
</tr>
<tr>
<td><em>Epinephelus morrhua</em></td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td><em>Epinephelus polyplakadion</em></td>
<td>8</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td><em>Epinephelus retioi</em></td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td><em>Epinephelus rivulatus</em></td>
<td>14</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td><em>Plectropomus laevis</em></td>
<td>14</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td><em>Plectropomus leopardus</em></td>
<td>42</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td><em>Variosi albimarginata</em></td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td><em>Variosi loowi</em></td>
<td>34</td>
<td>28</td>
<td>18</td>
</tr>
</tbody>
</table>

| Total | 540 | 394 | 275 | 20 | 53 | 97 | 76 | 4 | 13 | 35 | 37 | 2 | 337 | 146 |

Table 1. Number of host-parasite combinations (HPCs) found in 28 species of serranids in New Caledonia.
certain this. Juvenile didymozoids are found in almost all families of fish and no attempt was made to separate the forms (Pozdnyakov and Gibson 2008) according to their morphology; it is likely that these juvenile didymozoids represent considerable biodiversity, but this is probably not specific to the serranids. Unidentified adult didymozoids, generally filiform species in cysts, were found in seven fish species. Juvenile didymozoids, generally free in the intestinal lumen or on gills, were found in six species; it is likely that these juveniles are in fact actually present in all serranid species, as they are in most other fish as well (unpublished observations).

In addition to the didymozoids, the families represented include three species-rich families, the Bucephalidae, Hemiuridae and Opecoelidae. The Bucephalidae has six ‘species’, including Prosorhynchus longisaccatus in three hosts; unidentified Prosorhynchus species might represent additional biodiversity, since species in this genus show some degree of host specificity. Six ‘species’ of Hemiuridae were found. These include a series of unidentified Lecithochirium forms from six hosts. The Opecoelidae includes seven ‘species’, including Cainocreadium epinepheli, apparently a generalist digenean species, found in eight hosts, species, and Allopodocotyle epinepheli and Helicometra epinepheli found respectively in three and two host species. Families represented by few species include the Acanthocolpidae, with the single species Stephanostomum japonocasum found in seven host species; the Bivesiculidae, with two ‘species’, Bivesicula claviformis in C. boenak and an unidentified Bivesicula species in three other fish species. The Derogenidae, Felodistomatidae, Gorgoderidae and Lepocreadiidae, were each represented by a single species.

Further comment on the identity of the opecoelid species Helicometra epinepheli is desirable. Durio and Manter (1968b) in recording a Helicometra species from Epinephelus sp. off New Caledonia could see no reason for separating H. epinepheli from the apparently widespread species H. fasciata. Sekerak and Arai (1974) in their review of the genus concurred, but considered H. pulchella the valid name, with both H. fasciata and H. epinepheli amongst a long list of synonyms (Sekerak and Arai 1974). However, enzyme electrophoretic studies in the Mediterranean indicated (Reversat et al. 1989, 1991, Reversat and Silan 1993) that morphologically indistinguishable Helicometra forms constituted a complex of three species. In view of this we consider it best to use the name H. epinepheli for the species from serranids believing that it is unlikely that they are conspecific with the forms from sparids, gobbiids and anguillids in the Mediterranean Sea and Atlantic Ocean.

The digeneans allow further comparison because an extensive bibliographical study of the digeneans of groupers has been published (Cribb et al. 2002). The 10 digenean families found here represent more than half of the 17 families recorded in groupers. The 16 genera recorded here represent one third of the 50 genera recorded for all digeneans of groupers of the Indo-West Pacific. Most of ‘missing’ families have only a small number of genera and species recorded.

Table 2 summarises a comparison between our results and the general work of Cribb et al. (2002). Sixteen of the serranid species listed in Cribb et al. (2002) were also investigated in the present study. In the 16 fish species in common, Cribb et al. (2002) listed 73 digenean species and we found 24 species. The total number of species reported by Cribb et al. (2002) and in this study is 90, not 97 (73 + 24) because of the species in common. The striking result is that, of the 24 digenean species found in New Caledonia, 17 are new records and 7 have already been found in the same fish species.

Table 2. Comparison of digeneans recorded in groupers of the Indo-Pacific (Cribb et al. 2002) and present results. Fish which were not listed in Cribb et al. (2002) are not listed here (i.e. many new records are not indicated).

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Number of species in Cribb et al.</th>
<th>Number of species in NC (Present paper)</th>
<th>Total number of species found in NC and already recorded</th>
<th>Species found in NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalopholis boenak</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cephalopholis miniata</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Cephalopholis sonnerati</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Cephalopholis urodeta</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Cromileptes altivelis</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Epinephelus areolatus</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Epinephelus chlorostigma</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Epinephelus cyanopodus</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Epinephelus fasciatus</td>
<td>13</td>
<td>4</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Epinephelus fuscoguttatus</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Epinephelus melanarius</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Epinephelus merria</td>
<td>11</td>
<td>2</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Epinephelus polyoctodon</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Plectropomus leopardus</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Variola albimarginata</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Variola louti</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>24</td>
<td>90</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 3 lists all new records and species which have already been found in the same fish species at other locations. Most species here are common species, such as Cainocreadium epinepheli, which have been recorded in many hosts. This suggests that the high number of new records in the present study is simply a consequence of better sampling, but sample sizes cannot be compared because no such information is available in the study by Cribb et al. (2002) which is based on a compilation of the literature. These major differences obtained for common species probably preclude any serious biogeographical conclusions on other digenean species and about the New Caledonian fauna of grouper digeneans.
Cestoda Bothriocephalidea. A single case of an adult bothriocephalid was found in the 275 specimens of serranids examined for ‘abdominal organs’. This extremely low percentage is certainly significant; adult bothriocephalids are found in only a few other families (Kuchta et al. 2009b). This single case in serranids was found in a fish which had the rare characteristics of being a hybrid of *Ce. aurantia* × *Ce. spiloparaea* (Randall and Justine 2008) and being a deep-sea fish of the outer slope of the reef. It is not known if one of these factors is significant in this discovery.

A few larval bothriocephalideans were found in the flesh or digestive tract and were impossible to identify to species.

Cestoda Tetraphyllidea. Larval tetraphyllideans were found in the digestive lumen of 13 of the species studied. Because these specimens are very small and easy to overlook, especially with the ‘direct examination’ method, we consider it is probable that all serranids harbour tetraphyllidean larvae; this is also the case for most carnivorous fishes of other teleost families (unpublished observations).

Tetraphyllideans are parasites of elasmobranchs as adults and their life cycle involves a crustacean and one or several successive teleost intermediate hosts (Euzet 1994). Adult tetraphyllideans have been found in most sharks and rays examined in New Caledonia (Euzet and Justine, unpublished).

Tetraphyllidean larvae are sometimes very small and were probably overlooked; it might be that some species of Lecanicephalidea or Rhinebothriidea are included within these collections.

The degree of biodiversity represented by these tetraphyllideans larvae is not known, but 31 morphotypes were found in labrids of the Great Barrier Reef (Chambers et al. 2000, Muñoz et al. 2007); there is no reason why our samples should not exhibit at least as much diversity.

Cestoda Trypanorhyncha. Eight ‘species’ of larval trypanorhynchs, including five identified to the species level, have been found; they belong to three families, namely Lacistorhynchidae, Pseudotobothriidae and Otobothriidae. The trypanorhynch larvae found have already been recorded from a number of teleosts hosts (Palm 2004). The detailed lists in Palm (2004) allowed the identification of new host records and new geographical records. All species were found in cysts located in various sites around the body cavity.

*Pseudogilquinia pillersi* was found in four host species.

Three hosts have already been recorded (Beveridge et al. 2007); *Pl. leopardis* is a new host record. This species is known from Sri Lanka, Australia and New Caledonia.

*Pseudolacistorhynchus heroniensis* was found in seven host species. *Ep. cyanopus* has already been recorded (Sigura and Justine 2008); *Ce. boenak*, *Ep. chlorostigma*, *Ep. fasciatus*, *Ep. howlandi*, *Ep. polyphakadin* and *Ep. rivulatus* are new host records. This species is known only from the east coast of Australia and New Caledonia.

*Callitetrarhynchus gracilis* was found in four host species, *Ce. boenak*, *Ep. chlorostigma*, *Ep. rivulatus* and *Va. louti*, which are all new host records. New Caledonia is a new geographical record for this cosmopolitan species.

*Floriceps minacanthus* was found in six host species. *Ep. cyanopus* has already been recorded (Sigura and Justine 2008); *Pl. leopardis* has been recorded from Heron Island, Australia (Palm 2004) and *Va. louti* from Egypt, Red Sea (Abdou and Palm 2008) and various locations in the Pacific (Eniwetok, Kiribati) (Palm 2004); New Caledonia is a new geographical record for this species. *Ce. miniata*, *Ce. urodeta*, and *Pl. laevis* are new host records.

### Table 3. Digeneans in serranids: comparisons between the list of records (Cribb et al. 2002) and our records in New Caledonia, including new records and species already recorded.

<table>
<thead>
<tr>
<th>Fish species</th>
<th>NC as new record</th>
<th>Found in NC, already recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalopholis boenak</td>
<td>Bive: Bivesticula claviformis</td>
<td></td>
</tr>
<tr>
<td>Cephalopholis miniata</td>
<td>Opec: Cainocreadium epinepheli</td>
<td></td>
</tr>
<tr>
<td>Cephalopholis urodeta</td>
<td>Acan: Stephanostomum japonocassum</td>
<td></td>
</tr>
<tr>
<td>Epinephelus areolatus</td>
<td>Acan: Stephanostomum japonocassum</td>
<td>Buce: Prossorychus longisaccatus</td>
</tr>
<tr>
<td>Epinephelus chlorostigma</td>
<td>Acan: Stephanostomum japonocassum</td>
<td></td>
</tr>
<tr>
<td>Epinephelus cyanopodus</td>
<td>Buce: Prossorychus longisaccatus</td>
<td>Hemi: Erinlepturus hamati</td>
</tr>
<tr>
<td>Epinephelus fasciatus</td>
<td>Opec: Cainocreadium epinepheli</td>
<td>Opec: Allopodocotyle epinepheli</td>
</tr>
<tr>
<td>Epinephelus malabaricus</td>
<td>Buce: Prossorychus maternus</td>
<td>Opec: Helicometra epinepheli</td>
</tr>
<tr>
<td>Epinephelus merra</td>
<td>Opec: Allopodocotyle epinepheli</td>
<td>Opec: Pacificreadium serrani</td>
</tr>
<tr>
<td>Plectropomus leopardus</td>
<td>Opec: Cainocreadium epinepheli</td>
<td>Opec: Helicometra epinepheli</td>
</tr>
<tr>
<td>Variola albimarginata</td>
<td>Buce: Prossorychus serrani</td>
<td>Lepo: Lepidapedoides angustus</td>
</tr>
<tr>
<td>Variola louti</td>
<td>Opec: Stephonostomum japonocassum</td>
<td>Opec: Allopodocotyle epinepheli</td>
</tr>
</tbody>
</table>

Lauren Chambers, unpublished.
Pseudotobothrium dipsacum was found in 10 host species. Ce. sonnerati, Ep. malabaricus and Va. louti have already been recorded from Zanzibar, East Africa (Beveridge et al. 2000) and Ep. coioides and Pl. leopardus have already been recorded on Heron Island, Queensland, Australia (Beveridge et al. 2000); New Caledonia is a new geographical record for all these species. Ce. miniata, Ce. urodelta, Ep. fasciatus, Ep. retouti and Pl. laevis are new host records.

Trypanorhynchs are parasites of elasmobranchs as adults, and their life cycle involves a crustacean and one or several successive teleost intermediate hosts (Campbell and Beveridge 1994, Palm 2004). Pseudogilquinia pillersi is apparently restricted to large predatory serranids, suggesting that a smaller fish is involved as the previous host in the life cycle (Beveridge et al. 2007). For the four other species (Pseudolacistorhynchus heroniensis, C. gracilis, F. minacanthus and Pseudotobothrium dipsacum), a main characteristic of the larvae is their absence of host specificity; it is likely that an exhaustive search would find that all serranid species harbour all of these four trypanorhynch species. These four species have also been found in New Caledonia in many carnivorous fishes other than serranids, including lutjanids and lethrinids (Beveridge and Justine, unpublished).

Hosts of adults of C. gracilis and F. minacanthus are sharks, including carcharhinids (Carcharinus spp.) which are abundant in New Caledonian waters. Adult C. gracilis and F. minacanthus have also been collected in the hemigaleid Trienodon obesus (Rüppell) in New Caledonia (Beveridge and Justine, unpublished). The adult of Pseudolacistorhynchus heroniensis has been found (Beveridge and Justine 2007) in the leopard shark, Stegostoma fasciatum (Hermann), while the host of the adults of Pseudotobothrium dipsacum remains unknown.

Nematoda. Nematodes recorded belong to five families, the Anisakidae, Camallanidae, Capillariidae, Cucullanidae and Philometridae.

The Anisakidae is represented by larvae only, generally encapsulated on the surface of organs or free in the lumen of the digestive tract. Generally, no effort has been made to identify these larvae at the generic level, but some of them were found to belong to the genera Anisakis, Hysterothylacium and Terranova. Specific identification of such larvae on the basis of morphological characters is impossible. These anisakid larvae are found in almost all teleosts and show very little specificity at this stage (Williams and Jones 1994). Fishes harbouring these larvae serve only as paratenic hosts, being apparently, however, the main source of infection for the definitive hosts, mainly piscivorous elasmobranchs, teleosts, marine reptiles and marine mammals (Anderson 2000, Moravec 1994, Williams and Jones 1994).

The Camallanidae includes Procamallanus variolae, found in two host species. Specimens of Capillariidae have been found only in coralgroupers, Plectropomus spp., and have not yet been identified at the species level. Cucullanidae species have been found in the two species of Variola only and have not yet been described.

The Philometridae found here includes three species, which exhibit two distinct specificity strategies. Philometrids from the eye and orbit of five hosts all correspond to the apparently non-specific single species Philometra ocularis, but philometrids from the gonads show a higher degree of host specificity (Moravec and Justine 2008). Until recently, gonad-infecting philometrids from many species of marine teleosts, including some groupers, were reported from various geographical regions as Philometra lateolabracis, a species inadequately described from Japan, with unknown males (Moravec 2006). The recent discovery of the male of P. lateolabracis from the type host and type locality (Quiaizon et al. 2008a) has made it possible to distinguish this species from other related congeners on the basis of male morphology and thus contributed greatly to the taxonomy of the important gonad-infecting philometrids in general (e.g. Moravec and Justine 2008, 2009, Quizon et al. 2008a,b). Since little or no attention has so far been paid to the examination of the body skin, mouth cavity and fins of New Caledonian serranids, it can be expected that additional representatives of Philometridae will be found in these hosts. Philometrids (species of Philometra, Philometroides and Spirophilometra) utilising these locations within the host are known from serranid fishes in other geographical regions (Moravec 2006; unpublished).

Turbellaria. A single case of a parasitic turbellarian has been found on the gills of Ep. fasciatus. These parasitic forms are very difficult to study because they are fragile and have no sclerotised parts. Similar forms in an acanthurid (Justine et al. 2009b) were referred to Piscinclus (Genostomatidae) but the species from the serranids has not been studied in sections and it is not possible to refer it to this genus or to Paravortex (Dalyelliiidae). These turbellarian parasites are extremely rare and have been found in only 0.3% of the fish of various families examined in New Caledonia (Justine et al. 2009b).

Acanthocephala. A single specimen has been found in the deep-sea grouper Ep. morrhua.

A numerical evaluation of parasite biodiversity in serranids

Table 1 was built by counting each parasitological finding (i.e. each line in Appendix 1) as a host-parasite combination (HPC). Table 1 details the number of HPCs found in each fish species, and indicates how many fish specimens have been examined.

The number of HPCs is different from the actual number of parasite species, for two reasons (a) a parasite species present in several hosts is counted as several
HPCs; and (b) HPCs in Table 1 enumerate findings which widely range in systematic precision. HPCs may designate:

- species-level identified parasites (SLIPs);
- parasite species identified at the generic level only, but which probably represent only a single species (examples: several digeneans);
- parasite species identified at the generic level only, but for which we already know that they represent a number of different species (example: the monogeneans *Pseudorhabdosynochus* spp.); these probably represent a total of about 30 species;
- parasite species identified at the family or upper level, for which we know that abundant biodiversity is hidden within this HPC. This includes unidentifiable larvae such as gnathiid isopods, anisakid nematodes, didymozoid digeneans and tetraphyllidean metacestodes. These probably represent about 50 species.

The 337 HPCs shown in Table 1 represent a ratio of about 12 HPCs per fish species. It is likely that better parasite species identification would probably boost the total to over 400 HPCs for the 28 fish species in Table 1, with a ratio of about 14 HPCs per fish species.

Precise comparisons of parasite faunas could only be achieved based on counts of species-level identified parasites (SLIPs) and our sampling (Table 1) was sometimes limited to a small number of fish. Table 4 includes only those fish species for which at least five specimens were studied for both the gills and the abdominal organs and for which SLIPs are available. Accumulation curves (Cribb 1998) show that about half of the digenean diversity found in a sample of 30 fish is found with a sample of five (see also Dove and Cribb 2006). We do not know if these accumulation curves are valid for other groups. Monogeneans generally have species with high prevalence, with the consequence that smaller samples are needed to detect a significant proportion of diversity than for digeneans; on the other hand, sampling has often demonstrated the presence of very rare monogenean species, found only in a few specimens compared to thousands of specimens of the abundant species (Hinsinger and Justine 2006a, Sigura and Justine 2008, Justine and Euzet 2006, Poulin and Justine 2008).

Table 4 shows a total of 109 species-level identified parasite–host–parasite combinations (SLIP-HPCs) for 14 fish species (ca. 7.8 per fish). As with Table 1, the total number of SLIP-HPCs is different from the actual number of different parasite species because certain parasites are found in several fish species. The number of different parasite species was 63 (4.5 per fish).

The ratio of the number of SLIP-HPCs to the number of different parasite species is also shown in Table 4: it differs drastically among parasite groups. Trypanorhynch larvae, with 21 combinations and only five species (4.2 combinations, i.e. as many hosts per species) exemplify a group composed of species with low host specificity. We hypothesise above that probably all serranids harbour all of the four major species, so an exhaustive search would probably find an even higher ratio. Monogeneans, with 34 combinations and 32 species (1.06 combinations per species) exemplify a parasite group which is known to display strong host specificity. Additional cases are found in the other groups. Copepods have 14 combinations and six species, but when the different Hatschekia species are described, will show a very much lower number of combinations per species. The SLIP-HPCs:parasite species ratio calculated from Table 4 for all groups is 1.71 (109/63) which means that parasite species are generally found in more than one host.

### Table 4. Number of species-level identified parasites (SLIPs) found in those 14 serranid species for which at least 5 specimens were studied for both gills and abdominal organs in New Caledonia.

<table>
<thead>
<tr>
<th>Fish</th>
<th>Isop</th>
<th>Cope</th>
<th>Mono</th>
<th>Dige</th>
<th>Tryp</th>
<th>Nema</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Cephalopholis boenak</em></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td><em>Cephalopholis sonnerati</em></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td><em>Cephalopholis urodeta</em></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td><em>Epinephelus areolatus</em></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td><em>Epinephelus coeruleopunctatus</em></td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td><em>Epinephelus cyanopodus</em></td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td><em>Epinephelus fasciatus</em></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td><em>Epinephelus howlandi</em></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td><em>Epinephelus maculatus</em></td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td><em>Epinephelus merra</em></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td><em>Epinephelus rivulatus</em></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td><em>Plectropomus laevis</em></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td><em>Plectropomus leopardis</em></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td><em>Vargula litt</em></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Number of SLIP-HPCs</td>
<td>5</td>
<td>14</td>
<td>34</td>
<td>28</td>
<td>21</td>
<td>7</td>
<td>109</td>
</tr>
<tr>
<td>Number of different parasite species</td>
<td>5</td>
<td>6</td>
<td>32</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>63</td>
</tr>
<tr>
<td>Number of SLIP-HPCs: number of different parasite species Ratio</td>
<td>1.233</td>
<td>1.06</td>
<td>2.54</td>
<td>4.2</td>
<td>1.5</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>Number of different parasite species: number of fish species Ratio</td>
<td>0.36</td>
<td>0.42</td>
<td>0.29</td>
<td>0.79</td>
<td>0.36</td>
<td>0.29</td>
<td>4.5</td>
</tr>
</tbody>
</table>

An attempted prediction of parasite biodiversity in groupers

Our data include fish with various sample sizes (from 1 to more than one hundred). Table 5 shows that the numbers of HPCs, SLIP-HPCs and different parasite species increase with the quality of sampling. The most extensively sampled fish had 17.9 HPCs / fish species, 9.0 SLIP-HPCs / fish species and the number of different parasite species was 6.3 / fish species. This latter number was computed from Appendix 1 and counts only once the parasite species found in several fish: it is thus an estimate of the total parasite biodiversity.

However, we have seen above that this number is an underestimate because many parasite species are yet undescribed and because several groups were not identified.
at the species level. Also, for six of the seven fish species with the maximum sampling effort (n > 29), the number of fish examined for gills and/or for abdominal organs was below 29 and thus these fish certainly cannot be considered as well sampled. Thus, in Table 6, we propose to predict parasite biodiversity in serranids by multiplying the results obtained by approximately 2. Predictions are 30 HPCs and 10 different parasite species per fish, thus 1230 HPCs and 410 different parasite species for all the 41 groupers of New Caledonia.

Table 5. Effect of fish sampling on the number of parasites found. Number of HPCs and SLIP-HPCs are from Table 1; number of different parasite species computed from Appendix 1.

<table>
<thead>
<tr>
<th>Sampled fish number</th>
<th>Total fish number</th>
<th>HPCs per fish species</th>
<th>SLIP-HPCs per fish species</th>
<th>Parasite species</th>
<th>Parasite species per fish species</th>
</tr>
</thead>
<tbody>
<tr>
<td>n &lt; 5</td>
<td>11</td>
<td>25</td>
<td>91</td>
<td>8.27</td>
<td>29</td>
</tr>
<tr>
<td>n = 5–29</td>
<td>10</td>
<td>124</td>
<td>121</td>
<td>12.10</td>
<td>54</td>
</tr>
<tr>
<td>n &gt; 29</td>
<td>7</td>
<td>391</td>
<td>125</td>
<td>17.86</td>
<td>63</td>
</tr>
<tr>
<td>All fish</td>
<td>28</td>
<td>540</td>
<td>337</td>
<td>12.04</td>
<td>146</td>
</tr>
</tbody>
</table>

Table 6. Predictions of biodiversity in serranids.

<table>
<thead>
<tr>
<th></th>
<th>All 28 serranids / fish</th>
<th>7 species with n &gt; 9 / fish</th>
<th>Prediction / fish</th>
<th>Prediction, all 41 groupers of New Caledonia</th>
<th>Prediction, all 159 groupers of the World</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPCs</td>
<td>12</td>
<td>17.9</td>
<td>30</td>
<td>1230</td>
<td>4770</td>
</tr>
<tr>
<td>Different parasite species</td>
<td>2.7</td>
<td>6.3</td>
<td>10</td>
<td>410</td>
<td>1590</td>
</tr>
</tbody>
</table>

Table 7. Size of selected fish and number of parasite species. Fish lengths according to Kulbicki et al. (2005).

<table>
<thead>
<tr>
<th>Fish</th>
<th>Maximum length</th>
<th>Number of host-parasite combinations</th>
<th>Number of parasite species (identified at species level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Ep. merra</em></td>
<td>25</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td><em>Ep. fasciatus</em></td>
<td>36</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>Large species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Ep. maculatus</em></td>
<td>60</td>
<td>36</td>
<td>19</td>
</tr>
<tr>
<td><em>Ep. cyanopodus</em></td>
<td>76</td>
<td>31</td>
<td>20</td>
</tr>
</tbody>
</table>

An attempted prediction of parasite biodiversity in other fish of the Lagoon

Our results on serranids can be extrapolated to all fish families, but with some precautions. parasite biodiversity can differ in other fish families because of different body sizes and because of phylogenetic or ecological differences.

In Table 7, we compared the number of parasite species on a small subset of our results, limited to fish species with a significant sample size (n > 29) for both gills and abdominal organs except *Ep. cyanopodus, n = 22* and in which the monogeneans have been extensively described. This analysis shows that large fish have more parasite species than small fish, as expected (Luque and Poulin 2007). *Ep. fasciatus* (maximum length 36 cm) has a mean length similar to the mean length of ca. 400 species of lagoon fishes of New Caledonia (Kulbicki et al. 2005). Therefore
it is reasonable to consider that the results found for this fish (10 parasite species per fish species) could be extrapolated to all fish of the lagoon (but see below for limits).

Other fish families of the lagoon of New Caledonia have not been sampled as extensively as the serranids. However, we already know examples of parasite biodiversity in other families that are similar to that of serranids, such as digeneans of balistids (Bray and Justine 2006b, 2007, Bray et al. 2009a, b), monogeneans of lutjanids (Krisky et al. 2009), monogeneans (Justine 2007d, Rascalou and Justine 2007, Justine et Briand 2010) and nematodes (Moravec and Justine 2010) of lethrinids, and monogeneans (řehulková et al. 2010) and digeneans (Bray and Justine 2008) of muluids. Because monogeneans often constitute a major part of parasite biodiversity, families with few monogeneans could significantly decrease parasite biodiversity: this could be expected for the labrids (Lim and Justine 2007, Munoz et al. 2007) or gobids. It might be also that carnivorous fish such as labrids have increased opportunities to obtain parasites than fish with other diets. However, our prediction of 10 parasite species per fish being minimal, we believe that several families with higher parasite biodiversity would compensate for families with lower diversity. For the ca. 1,700 fish species in the lagoon of New Caledonia (Fricke and Kulbicki 2007), we may thus predict about 17,000 different parasite species and 2–3 times more (34,000–51,000) host-parasite combinations.

To obtain these predicted numbers, a tremendous sampling effort would be necessary. At least 30 specimens would have to be examined for each fish species, and the number of individual parasites examined would be enormous. This is simply another manifestation of the taxonomic impediment. These figures include only metazoans (helminths and parasitic crustaceans), but it is likely that microscopic protistan and myxozoan parasites would greatly increase these numbers: for example, the examination of five serranid species from the Great Barrier Reef has revealed seven species of ceratomyxid myxozoans (Gunter and Adlard 2009).

On the basis of simple calculations mainly based on monogenean diversity, a prediction of 20,000 parasite species (including metazoans and protozoans) has been made for the 1,000 fish species of Heron Island in the Great Barrier Reef (rohde 1976). Our prediction is similar to Rohde’s estimate, taking into account the proportion of microscopic parasites present.

New Caledonia exemplifies the need for taxonomic studies on fish parasites. A compilation of 107 publications provided a list of 371 species of fish parasites in New Caledonia (Justine 2010), which does not include the newly published serranid parasites of the present paper. This means that about 2% (370:17,000) of the total predicted fish parasite biodiversity has been recorded so far. For the evaluation of tropical forest biodiversity, and without targeting parasite groups, a major problem is that “the proportion of ‘morphospecies’ that cannot be assigned to identified species and the number of ‘scientist-hours’ required to process samples both increase dramatically for smaller-bodied taxa” (Lawton et al. 1998). This situation applies perfectly to the parasites of coral reef fishes.

### An attempt at biogeographical comparison

The availability of these numerically important data on the biodiversity of parasites of serranids in New Caledonia should allow us to make comparisons with the parasitic faunas of the same fish species in other locations. Most of the serranid species mentioned in this study have a wide geographical distribution (Heemstra and Randall 1993, Froese and Pauly 2009) and it might be expected that we would find copious records of their parasitic fauna. To our great disappointment, we found very few similarly comprehensive studies in the literature.

Several studies investigated the fauna of monogeneans on various coral reefs of the Indo-Pacific, but these have been restricted to a few genera (Plaisance et al. 2005, 2008) or a few species (Justine 2005a, Marie and Justine 2006, Justine et al. 2009a); a few digeneans have also been compared in various locations (Lo et al. 2001). A few studies have used more than one parasite group, but on the basis of vague comparison (Williams et al. 1996)

---

### Table 8. Available references on the parasites of serranids in the Indo-Pacific Region.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Parasite groups</th>
<th>Locality</th>
<th>Number of serranid species mentioned</th>
<th>Number of serranid species in common with the present study</th>
<th>Number of parasites mentioned in these species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al. 2003</td>
<td>Monogeneans</td>
<td>China</td>
<td>ca. 11</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Rigby et al. 1999</td>
<td>all</td>
<td>French Polynesia</td>
<td>2</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Yang 2007</td>
<td>Cestodes</td>
<td>China</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arthur and Te 2006</td>
<td>all</td>
<td>Viet Nam</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Arthur and Rahman-Mayo 1997</td>
<td>all</td>
<td>Philippines</td>
<td>5</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Arthur and Ahmed 2002</td>
<td>all</td>
<td>Bangladesh</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yamaguti 1968</td>
<td>Monogeneans</td>
<td>Hawaii</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yamaguti 1970</td>
<td>Digeneans</td>
<td>Hawaii</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Beumer et al. 1983</td>
<td>all</td>
<td>Australia</td>
<td>8</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Lester and Sewell 1989</td>
<td>all</td>
<td>Heron Island, Queensland, Australia</td>
<td>10</td>
<td>5</td>
<td>54</td>
</tr>
</tbody>
</table>

---

(Continued on the next page...)

On the basis of simple calculations mainly based on monogenean diversity, a prediction of 20,000 parasite species (including metazoans and protozoans) has been made for the 1,000 fish species of Heron Island in the Great Barrier Reef (Rohde 1976). Our prediction is similar to Rohde's estimate, taking into account the proportion of microscopic parasites present.

New Caledonia exemplifies the need for taxonomic studies on fish parasites. A compilation of 107 publications provided a list of 371 species of fish parasites in New Caledonia (Justine 2010), which does not include the newly published serranid parasites of the present paper. This means that about 2% (370:17,000) of the total predicted fish parasite biodiversity has been recorded so far. For the evaluation of tropical forest biodiversity, and without targeting parasite groups, a major problem is that “the proportion of ‘morphospecies’ that cannot be assigned to identified species and the number of ‘scientist-hours’ required to process samples both increase dramatically for smaller-bodied taxa” (Lawton et al. 1998). This situation applies perfectly to the parasites of coral reef fishes.

**An attempt at biogeographical comparison**

The availability of these numerically important data on the biodiversity of parasites of serranids in New Caledonia should allow us to make comparisons with the parasitic faunas of the same fish species in other locations. Most of the serranid species mentioned in this study have a wide geographical distribution (Heemstra and Randall 1993, Froese and Pauly 2009) and it might be expected that we would find copious records of their parasitic fauna. To our great disappointment, we found very few similarly comprehensive studies in the literature.

Several studies investigated the fauna of monogeneans on various coral reefs of the Indo-Pacific, but these have been restricted to a few genera (Plaisance et al. 2005, 2008) or a few species (Justine 2005a, Marie and Justine 2006, Justine et al. 2009a); a few digeneans have also been compared in various locations (Lo et al. 2001). A few studies have used more than one parasite group, but on the basis of vague comparison (Williams et al. 1996)
Table 9. *Cromileptes altivelis*: comparison of its parasitic fauna in Heron Island (HI) (Lester and Sewell 1989) and New Caledonia (NC) (present study).

<table>
<thead>
<tr>
<th>Cromileptes altivelis</th>
<th>HI</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isop: Aeg: Aega lethrina</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Isop: Cora: Argathona macronema</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cope: Cali: Dentigrypis litus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cope: Siph: Larvae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Aney: Halotrema cromileptis</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Dige: Acan: Mitotrema acanthostomatsum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Buce: Prosorhynynchus sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nema: Anis: Unidentified larvae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Total: 8, 1 in common including 1 identified at species level</td>
<td>6 3</td>
<td></td>
</tr>
</tbody>
</table>

Table 10. *Epinephelus fasciatus*: comparison of its parasitic fauna in Heron Island (HI) (Lester and Sewell 1989) and New Caledonia (NC) (present study).

<table>
<thead>
<tr>
<th>Epinephelus fasciatus</th>
<th>HI</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cope: Phil: Colobomatus sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cope: Cali: Caligus n. sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cope: Hats: Hatscheckia sp. (n. sp. 1 in NC)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Caps: Benedenia cf. epinepheli</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Pseudorhabdosynochus youngi*</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Pseudorhabdosynochus caleidonicus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Aney: Halotrema epinepheli</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cest: Solec polymorphus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Bive: Bivescula sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Didy: Unidentified adults</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Didy: Unidentified larvae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Gorg: Phyllostomum sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Hemi: Lecithochirium sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Lepe: Lepidapedoides angustus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Opec: Allopodoctyle epinepheli</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Opec: Caineocreadium epinepheli</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Opec: Helicometra epinepheli</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tetra: Unid: Larvae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tryp: Laci: Pseudolacistorhynchus heroniensis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tryp: Psc: Pseudotobothrium dipacum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nema: Anis: Terranova sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nema: Anis: Unidentified species*</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Turbellaria: Unid: Unidentified species</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Total: 25; 5 in common, but possibly several ancyrocephalids*</td>
<td>5 20</td>
<td></td>
</tr>
</tbody>
</table>

Table 11. *Epinephelus malabaricus*: comparison of its parasitic fauna in Heron Island (HI) (Lester and Sewell 1989) and New Caledonia (NC) (present study).

<table>
<thead>
<tr>
<th>Epinephelus malabaricus</th>
<th>HI</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isop: Cora: Argathona rhinoceros</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cope: Hats: Hatscheckia n. sp. 6</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cope: Cali: Lepeophtheiruspectropompi</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cope: Siph: Chalimus larvae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Aney: Halotrema sp. 1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Aney: Halotrema sp. 2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Aney: Unidentified species*</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Caps: Allosprostonia taurinae</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Caps: Allobenedenia sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Caps: Sprotstonia longphallus***</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Diplectanum maui</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Pseudorhabdosynochus cf. shenzhenensis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Pseudorhabdosynochus maenas</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Pseudorhabdosynochus malabaricus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Pseudorhabdosynochus manifestus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Pseudorhabdosynochus maniplus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Pseudorhabdosynochus marcellus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Pseudorhabdosynochus muternus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mono: Dipl: Unidentified 6 species**</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Buce: Prosorhynynchus maernus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dige: Opec: Caineocreadium sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tryp: Laci: Pseudogilquinia pillersi</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tryp: Psc: Pseudotobothrium dipacum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nema: Anis: Terranova sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nema: Unidentified species</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Total: 25; 5 in common, but possibly several ancyrocephalids*</td>
<td>5 20</td>
<td></td>
</tr>
</tbody>
</table>

land (Queensland), on the Great Barrier Reef. This study has the additional interest of being limited to a small geographical area, as is our study.

Five species of groupers were shared by the Heron Island (HI) list and our work in New Caledonia (NC). Tables 9–13 summarise the parasite species found on HI and in NC for these five fish species. An interesting case is *Ep. merra*. Of 16 parasite records, including 7 on HI and 9 in NC, none was found in common (Table 13). ‘Detection work’ on Museum slides deposited by P. C. Young in collections (Justine et al. 2009a) lead to the conclusion that the fish designated as *Ep. merra* in parasitological works by Young was probably *Ep. quoyanus*. It is therefore not surprising that no parasite was found in common between two different fish species; this work exemplifies the need for deposition of parasite, and even fish, specimens, tissue samples and digital images. Finally, after excluding *Ep. merra*, only four species of fish could be compared for their parasitic fauna between HI and NC (Table 14). In total these fish had 91 parasite records (37 on HI and 65 in NC). Including imprecise identifications only nine records were shared. Shared records with identifications at the species level were only six (7% of all records). These include one isopod, the corallanid *Argathona macronema* in *Pl. leopardus*; one copepod, the hatschekiid *Hatschekia*

or with a very low level of parasite identification (Lafferty et al. 2008). Apparently no study has compared significant lists of parasites from several groups with a sufficient level of parasite taxonomic accuracy in several locations.

Table 8 lists general surveys of fish parasites available for the Indo-Pacific. Only helminths and parasitic crustaceans are included. Most studies have only a very small number of serranid species and parasites in common with our study. The study by Rigby et al. (1999) apparently has more potentially comparable data, but the lack of precision of the parasite identifications makes it of little value. Finally, significant and reliable data are available only in the general list of Lester and Sewell (1989) for Heron Is-
plectropomi in *Pl. leopardus*; two monogeneans, the ancyrocephalid *Haliotrema cromileptis* in *Cromileptes altivelis* and the diplectanid *Pseudorhabdosynochus youngii* in *Ep. fasciatus*; one digenean, the opecoelid *Ep. fasciatus* in *Pl. leopordus* - *Pseudorhabdosynochus youngii*; and one larval trypanorhynch cestode, *Floriceps minicanthus*.

Only limited comparisons can be made between the trypanorhynch species found in New Caledonia and those reported from Heron Island by Lester and Sewell (1989) and Palm (2004). All five species occur around Heron Island and all except *C. gracilis* and *P. pillersi* have been found in serranids (*Ep. ongus*, *Ep. quoyanus*, *Pl. leopar dus*, *Pl. maculatus*). There are numerous records of *C. gracilis* from telesotes from the north-east coast of Australia (Palm 2004), though none is from serranids, while *P. pillersi* has been reported from lethrinids off Heron Island (Beveridge et al. 2007). More extensive collecting of serranids at Heron Island is likely to confirm the presence of all of these trypanorhynch species in this host group.

### Table 12. *Plectropomus leopardus*: comparison of its parasitic fauna in Heron Island (HI) (Lester and Sewell 1989) and New Caledonia (NC) (present study).

<table>
<thead>
<tr>
<th>Plectropomus leopardus</th>
<th>HI</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isop: Aegi: Aega lehtrina</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Isop: Cora: Argathona macronema</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Isop: Cora: Argathona rhinoceros</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Cali: Dentigryps sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Cali: Lepeophtheirus sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Dis: <em>Dissonus manteri</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: D: Unidentified species</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Hats: <em>Hatschekia plectropomi</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Lern: <em>Sagum epinepheli</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Penn: <em>Larvae</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mono: Anyc: Unidentified species</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mono: Caps: <em>Trychopopus</em> sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mono: Dipl: <em>Echinoplectanum leopordus</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mono: Dipl: <em>Echinoplectanum pudicum</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mono: Dip: <em>Echinoplectanum raram</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mono: Dip: Unidentified species</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Brve: Unidentified species</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Buce: <em>Prosorhynchus</em> sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Buce: <em>Neidartia</em> sp. 1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Buce: <em>Neidartia</em> sp. 2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Didy: Unidentified species</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Hemi: Unidentified</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Opec: <em>Pacificreadium serrani</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Ap: <em>Pearsonellum conventum</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tetra: Unid: Unidentified species</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tryp: Laci: <em>Pseudogoliupina pillersi</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tryp: Laci: <em>Floriceps minicanthus</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tryp: Buce: <em>Neidartia</em> sp. 1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tryp: Unid: Unidentified species</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nema: Anis: <em>Hysterothylacium sp.</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nema: Anis: <em>Terranova sp.</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nema: Capi: Unidentified species</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Comments: Total: 33; 5 in common, including 4 identified at the species level</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

### Table 13. *Epinephelus merra*: comparison of its parasitic fauna in Heron Island (HI) (Lester and Sewell 1989) and New Caledonia (NC) (present study). Discrepancies suggest that the host was misidentified in Heron Island (see text).

<table>
<thead>
<tr>
<th>Epinephelus merra</th>
<th>HI</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cope: Cali: <em>Caligus epinepheli</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Cali: <em>Lepeophtheirus</em> sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Lern: <em>Sagum epinepheli</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Lern: <em>Allela pterobrachiata</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Lern: <em>Anaclavela sillaaginoides</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Lern: <em>Thysano gyomobrachiata</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Penn: <em>Larvae</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cope: Siph: <em>Larvae</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mono: Dipl: <em>Pseudorhabdosynochus melanisensis</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mono: Dipl: <em>Pseudorhabdosynochus cf. coioideis</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mono: Capi: Unidentified Benedeminae</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Opec: <em>Allopodocotyle epinepheli</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Opec: <em>Cainocreadium epinepheli</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Opec: <em>Helicometra epinepheli</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Opec: <em>Helicometra fasciata</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dige: Ap: <em>Pearsonellum conventum</em></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Comments: Total: 16, 0 in common</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

### Table 14. Summary of all comparisons in Tables 9–13 between serranids of Heron Island (HI) and New Caledonia (NC). *Epinephelus merra* is excluded because of fish misidentification in HI (Justine et al. 2009a).

<table>
<thead>
<tr>
<th>Fish</th>
<th>HI</th>
<th>NC</th>
<th>Total of records</th>
<th>Records in common (including imprecise identifications)</th>
<th>Records in common (with identification at species level)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Cromileptes alivelsis</em></td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><em>Epinephelus fasciatus</em></td>
<td>7</td>
<td>21</td>
<td>25</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td><em>Plectropomus leopards</em></td>
<td>19</td>
<td>20</td>
<td>33</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td><em>Epinephelus malabaricus</em></td>
<td>5</td>
<td>20</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>65</td>
<td>91</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

From the prediction of the parasite fauna attempted above, we would expect 10 parasite species per fish, i.e. a total of 40 species for the four fish involved. Table 14 includes 91 records, but this does not indicate that biodiversity has been sampled accurately; indeed, many records are duplicated in both locations because of insufficient precision in species identification. As an example, for *Pl. leopards*, we do not know if the ‘unidentified Dissoniidae’ found on HI is the same as *Dissonus manteri* found in NC, and currently we are forced to regard these two records as separate taxa.

Reliable comparisons should be made only on parasites identified at the species level, and there are only six of these from the four species of fish (Table 14). It is difficult to interpret these results from a biogeographical perspective. We consider that the very small number of species in common does not reflect differences in the parasite fauna but rather shows that sampling was inadequate at both locations. The taxonomic impediment strikes again here,
making it practically impossible to compare the parasite faunas of the serranids in these two locations. Again, the limitation of 'scientist-hours' for small-bodied organisms (Lawton et al. 1998) is obvious.

Acknowledgements. The authors are in alphabetical orders, except for the first one. Julie Mounier, Charles Beaufrère, Anaïs Guillou, Audrey Guérin, Damien Hinsinger, Éric Bureau, Chloé Journo, Violette Justine, Amandine Marie, Audry Sigura, Guillaume Rascalou, Géraldine Colli, Lenaïg Hemery, Pierpaolo Brenna, Cyndie Dupoux, Isabelle Mary, Adeline Grugeaud, and Marine Briand, students, participated in the parasitological survey. Claude Chauvet (UNC, Nouméa) caught several fishes. Angelo di Matteo (IRD) provided technical help. Certain fishes were identified from photographs by Ronald Fricke (Staatliches Museum für Naturkunde, Stuttgart, Germany) or by Jack Randall (Bishop Museum, Hawai’i). Partly supported by Australian Research Council grant No. DP0556780 (2005–07) awarded to FM and Steve Donnellan (South Australian Museum) and Brena, Cyndie Dupoux, Isabelle Mary, Adeline Grugeaud, and Marine Briand, students, participated in the parasitological survey. Claude Chauvet (UNC, Nouméa) caught several fishes. Angelo di Matteo (IRD) provided technical help. Certain fishes were identified from photographs by Ronald Fricke (Staatliches Museum für Naturkunde, Stuttgart, Germany) or by Jack Randall (Bishop Museum, Hawai’i). Partly supported by Australian Research Council grant No. DP0556780 (2005–07) awarded to FM.

Appendix 1: Host-parasite list (28 fish species)

For brevity, all references are numbered according to this list:

The serranid hosts of digenean species described by Manter were often very vaguely designated as ‘leche’ (Justine 2007a). New Host Records for these species are indicated as NHR.

**Anysperdon leucogranicus** (Valenciennes, 1828)

**Cope**: Siph: larvae (gills) [0]
**Mono**: Dipl: Pseudohabdosynochus n. sp. 1 (gills) [0]
**Mono**: Dipl: Pseudohabdosynochus n. sp. 2 (gills) [0]

Remarks: Based on examination of 3 specimens (2 for gills, 1 for abdominal organs).
Host-parasite combinations: 3; with species-level identification: 0.

**Cephalopholis hybrid: aurantia × spiloparaea**

**Cope**: Siph: larvae (gills) [0]
**Both**: Both: Bothrioccephalus celinoe Kuchta, Scholz et Justine, 2009 (digestive tract) [21]

Remarks: Based on examination of single specimen (1 for gills, 1 for abdominal organs).

**Cephalopholis argus** Bloch et Schneider, 1801

**Isop**: Gnat: Praniza larvae (gills) [0]
**Mono**: Dipl: Pseudohabdosynochus argus Justine, 2007 (gills) [12]
**Mono**: Caps: unidentified species (gills) [0]
**Dige**: Buce: Prosorhynchus robertshomsoni Bott et Cribb, 2009 (digestive tract) [0] (NGR)
**Nema**: Anis: unidentified larvae (digestive tract) [0]

Remarks: Based on examination of 5 specimens (4 for gills, 3 for abdominal organs).
Host-parasite combinations: 5; with species-level identification: 2.

**Cephalopholis boenak** (Bloch, 1790)

**Isop**: Gnat: Praniza larvae (gills) [0]
**Isop**: Cora: Lanocira zeylanica Stebbing, 1905 (body) [0] (NHR)
**Dige**: Bive: Biveiscula claviformis Yamaguti, 1934 (digestive tract) [0] (NHR)
**Tetr**: Unid: larvae (digestive tract) [0]
**Dige**: Laci: Calectetrarhynchus gracilis (Rudolphi, 1819) larvae (body cavity) [0] (NHR)
**Tetr**: Laci: Pseudolactobothrium heroniensis Sakaranani, 1989 larvae (body cavity) [0] (NHR)

**Nema**: Anis: unidentified larvae (digestive tract) [0]
Remarks: Based on examination of 59 specimens (42 for gills, 18 for abdominal organs); absence of gill monogeneans confirmed on 42 specimens.
Host-parasite combinations: 7; with species-level identification: 4.

**Cephalopholis miniata** (Forsskål, 1775)

**Mono**: Caps: unidentified Benedeniinae 1 (branchiostegal membranes) [0]
**Mono**: Caps: unidentified Benedeniinae 2 (gills) [0]
**Mono**: Caps: unidentified Benedeniinae 3 (gills) [0]
**Mono**: Dipl: Diplectanum sp. (gills) [0]
**Dige**: Didy: unidentified adult (gills) [0]
**Dige**: Opec: Cunicraevum epinepheli (Yamaguti, 1934) (digestive tract) [0]

**Tetr**: Unid: larvae (digestive tract) [0]
**Tetr**: Laci: Floriceps minacantheme Campbell et Beveridge, 1987 larvae (body cavity) [0] (NHR)
**Tetr**: Pseu: Pseudotobothrium dipsacum (Linton, 1897) larvae (body cavity) [0] (NHR)

**Bipes**: Anis: unidentified larvae (digestive tract) [0]
Remarks: Based on examination of 3 specimens (3 for gills, 3 for abdominal organs).
Host-parasite combinations: 10; with species-level identification: 3.

**Cephalopholis sonnerati** (Valenciennes, 1828)

**Cope**: Penn: larvae (gills) [0]
**Mono**: Ancy: Halotrema sp. of Justine 2007 (gills) [12]
**Mono**: Caps: unidentified Benedeniinae (gills) [0]
**Mono**: Dipl: Diplectanum sp. (body cavity) [0] (NGR)
**Dige**: Opec: Pseudolactobothrium minuta Justine, 2007 (gills) [12]

**Tetr**: Unid: larvae (digestive tract) [0]
**Tetr**: Pseu: Pseudotobothrium dipsacum larvae (body cavity) [0] (NGR)

**Nema**: Anis: unidentified larvae (digestive tract) [0]
Remarks: Based on examination of 8 specimens (7 for gills, 5 for abdominal organs).
Host-parasite combinations: 8; with species-level identification: 3.

**Cephalopholis spiloparaea** (Valenciennes, 1828)

**Cope**: Siph: larvae (gills) [0]

**Tetr**: Unid: larvae (digestive tract) [0]

**Tetr**: Pseu: Pseudotobothrium dipsacum larvae (body cavity) [0] (NGR)

**Nema**: Anis: unidentified larvae (digestive tract) [0]
Remarks: Based on examination of 2 specimens (1 for gills, 2 for abdominal organs).
Host-parasite combinations: 3; with species-level identification: 0.

**Cephalopholis urodeta** (Schneider, 1801)

**Isop**: Gnat: Praniza larvae (gills) [0]
**Cope**: Penn: larvae (gills) [0]
**Mono**: Caps: unidentified species (gills) [0]
**Mono**: Dipl: Diplectanum parvus Justine, 2008 (gills) [13]
**Dige**: Acan: Stephanostomum japonocyamus Durio et Manter, 1969 (digestive tract) [0]
**Dige**: Buce: Prosorhynchus sp. (digestive tract) [0]
**Dige**: Opec: Helicometra sp. (digestive tract) [0]

**Tetr**: Unid: larvae (digestive tract) [0]
Tryp: Laci: Floriceps minacanthus larvae (body cavity) [0] (NHR)
Tryp: Pseu: Pseudotobothrium dipsacum larvae (body cavity) [0] (NHR)
Nema: Anis: unidentified larvae (digestive tract) [0]
Remarks: Based on examination of 38 specimens (32 for gills, 19 for abdominal organs).
Host-parasite combinations: 12; with species-level identification: 5.

Cromileptes altivelis (Valenciennes, 1828)
Cope: Siph: larvae (gills) [0]
Mono: Ancy: Haliotherea cf. cromileptis (gills) [0]
Nema: Anis: unidentified larva (digestive tract) [0]
Remarks: Based on the examination of 4 specimens (4 for gills, 2 for abdominal organs).
Host-parasite combinations: 3; with species-level identification: 0.

Epinephelus areolatus (Forsskål, 1775)
Isop: Gnat: Prania larvae (gills) [0]
Mono: Caps: unidentified immature larvae (gills) [0]
Mono: Dipl: Pseudorhabdosynochus sp. (gills) [0]
Mono: Dipl: Diplectanum sp. (gills) [0]
Dige: Buce: Prosorchynmus longisaccatus Durio et Manter, 1968 (digestive tract) [0] (NHR*)
Dige: Acan: Stephanostomum japonicum (digestive tract) [0]
Dige: Opec: Allopodocolyte sp. (digestive tract) [0]
Tetr: Unid: larvae (digestive tract) [0]
Nema: Anis: Terranova sp. larvae
Nema: Anis: Anisakis larvae
Nema: Phil: Philometra cyanopodi larvae
Nema: Unid: larvae (digestive tract) [0]
Remarks: Based on examination of 14 specimens (9 for gills, 12 for abdominal organs).
Host-parasite combinations: 11; with species-level identification: 3.

Epinephelus chlorostigma (Valenciennes, 1828)
Cope: Hats: Hatschekia n. sp. 2 (gills) [0]
Cope: Lern: Sagum epinepheli (Yamaguti et Yamasuo, 1960) (gills) [0] (NHR)
Mono: Caps: Allobenedenia cf. epinepheli (Bychowsky et Nagibina, 1967) (gills) [0]
Mono: Dipl: Pseudorhabdosynochus sp. (gills) [0]
Mono: Dipl: Diplectanum sp. (gills) [0]
Mono: Ancy: Haliotherea sp. (gills) [0]
Dige: Didy: unidentified adults (fin) [0]
Dige: Hemi: Lecithochirium sp. (digestive tract) [0]
Dige: Buce: Prosorchynmus sp. (digestive tract) [0]
Dige: Acan: Stephanostomum japonicum (digestive tract) [0]
Dige: Bive: Bivescula sp. (digestive tract) [0]
Tetr: Unid: larvae (digestive tract) [0]
Tryp: Laci: Pseudolacistorhynchus heroniensis larvae (body cavity) [0] (NHR)
Tryp: Laci: Callitetrarhynchus gracilis (Rudolphi, 1819) larvae (body cavity) [0] (NHR)
Nema: Anis: unidentified larvae (digestive tract) [0]
Remarks: Based on examination of single specimen (1 for gills, 1 for abdominal organs).
Host-parasite combinations: 16; with species-level identification: 5.

Epinephelus coeruleopunctatus (Bloch, 1790)
Cope: Lern: Sagum epinepheli (gills) [0] (NHR)
Cope: Hats: Hatschekia n. sp. 1 (gills) [0]
Cope: Cali: Lepeophtheirus epinepheli Ho et Dijiri, 1977 (Skin) [0] (NHR)
Mono: Dipl: Pseudorhabdosynochus bacchus Sigura, Chauvet et Justine, 2007 (gills) [26]
Mono: Dipl: Pseudorhabdosynochus sp. 1 (gills) [26]
Mono: Dipl: Pseudorhabdosynochus sp. 2 (gills) [26]
Mono: Ancy: Haliotherea sp. (gills) [26]
Dige: Buce: Prosorhynchus sp. immature (digestive tract) [0]
Dige: Dero: Derogenes-like sp. (digestive tract) [0]
Dige: Opec: Caiocreadium epinepheli (digestive tract) [5]
Remarks: Based on examination of 7 specimens (5 for gills, 5 for abdominal organs).
Host-parasite combinations: 10; with species-level identification: 4.

Epinephelus cooides (Hamilton, 1822)
Isop: Cora: Argathona rhinoceros (Bleecker, 1857) (nasal cavities) [0] (NHR)
Mono: Caps: Allobenedenia cf. epinepheli (gills) [0]
Mono: Dipl: Pseudorhabdosynochus sp. 1 (gills) [0]
Mono: Dipl: Pseudorhabdosynochus sp. 2 (gills) [0]
Mono: Dipl: Pseudorhabdosynochus sp. 3 (gills) [0]
Mono: Dipl: Pseudorhabdosynochus sp. 4 (gills) [0]
Mono: Ancy: Haliotherea sp. (gills) [0]
Tryp: Laci: Pseudolacistorhynchus pilleleri (Southwell, 1929) larvae (body cavity) [1]
Tryp: Pseu: Pseudotobothrium dipsacum larvae (body cavity) [0] (NHR)
Nema: Anis: unidentified larvae (digestive tract) [0]
Nema: Phil: Philometra cyanopodi larvae
Nema: Unid: larvae (digestive tract) [0]
Remarks: Based on examination of 1 specimen (1 for gills, 1 for abdominal organs).
Host-parasite combinations: 11; with species-level identification: 4.

Epinephelus cyanopodus (Richardson, 1846)
Isop: Gnat: Prania larvae (gills) [27]
Isop: Cora: Argathona rhinoceros (gills) [27] (NHR)
Cope: Cali: Caligus asymmetricus Kabata, 1965 (gills) [0] (NHR)
Cope: Cali: Lepeophtheirus plectropomi Nones-Ruivo et Fourmanoir, 1956 (gills) [0] (NHR)
Cope: Hats: Hatschekia n. sp. 1 (gills) [0]
Cope: Hats: Hatschekia n. sp. 11 (gills) [0]
Cope: Diss: Disonus manteri Kabata, 1966 (gills) [2][27]
Cope: Lern: Sagum epinepheli (gills) [27] (NHR)
Cope: Phil: Penn larvae (gills) [27]
Mono: Ancy: Haliotherea sp. (gills) [27]
Mono: Caps: Allobenedenia sp. (gills) [27]
Mono: Dipl: Pseudorhabdosynochus cyanopodus Sigura et Justine, 2008 (gills) [27]
Mono: Dipl: Pseudorhabdosynochus podocymans Sigura et Justine, 2008 (gills) [27]
Mono: Dipl: Pseudorhabdosynochus cyanopodus Sigura et Justine, 2008 (gills) [27]
Mono: Dipl: Pseudorhabdosynochus cyanopodus Sigura et Justine, 2008 (gills) [27]
Mono: Dipl: Pseudorhabdosynochus cyanopodus Sigura et Justine, 2008 (gills) [27]
Mono: Dipl: Pseudorhabdosynochus cyanopodus Sigura et Justine, 2008 (gills) [27]
Mono: Dipl: Pseudorhabdosynochus cyanopodus Sigura et Justine, 2008 (gills) [27]
Mono: Dipl: Pseudorhabdosynochus cyanopodus Sigura et Justine, 2008 (gills) [27]
Dige: Buce: Prosorhynchus longisaccatus (digestive tract) [3]
Dige: Didy: unidentified adults (gills) [27]
Dige: Didy: unidentified adults (fin) [27]
Dige: Felf: Tergestia sp. immature (digestive tract) [27]
Dige: Hemi: Erleipetopsis humati (Yamaguti, 1934) (digestive tract) [27]
Dige: Opec: Allopodocolyte epinepheli (Yamaguti, 1942) (digestive tract) [5]
Dige: Opec: Caiocreadium epinepheli (digestive tract) [27]
Tetr: Unid: larvae (digestive tract) [0]
Tryp: Laci: Pseudolacistorhynchus heroniensis larvae (body cavity) [27]
Tryp: Laci: Floriceps minacanthus larvae (body cavity) [27]
Nema: Phil: Philometra cyanopodi larvae (orbits) [27]
Nema: Phil: Philometra cyanopodi Larvae
Nena: Anis: Terranova sp. larvae (digestive tract) [27]
Remarks: Based on examination of 25 specimens (21 for gills, 14 for abdominal organs).
Host-parasite combinations: 31; with species-level identification: 20. The hemiurid Erleipetopsis tegel Woolcock, 1935 was recorded from “loche bleue” off New Caledonia (Manter 1969), which most prob-
ably corresponds to this host (Justine 2007a). Our findings did not confirm this record.

An exhaustive comparison of the parasitic fauna of this species in various locations was performed (Sigura and Justine 2008).

**Epinephelus fasciatus** (Forsskål, 1775)

*Cope*: Cali: Caligus n. sp. (gills) [0]
*Cope*: Hats: Hatschekia n. sp. 1 (gills) [0]
*Mono*: Caps: Benedenia cf. epinepheli (gills) [0]
*Mono*: Dipl: Pseudorhabdosynochus caledonicus Justine, 2005 (gills) [9]
*Mono*: Dipl: Pseudorhabdosynochus youngi Justine, Dupoux et Cribb, 2009 (gills) [17]
*Dige*: Biv: Bivincula sp. (digestive tract) [0]
*Dige*: Didy: unidentified larvae (opercula) [0]
*Dige*: Didy: unidentified larvae (digestive tract) [0]
*Dige*: Gorg: Phyllodistomum sp. (digestive tract) [0]
*Dige*: Hem: Lecithochirium sp. (digestive tract) [0]
*Dige*: Lepe: Lepidapedoidea angustoe Bray, Cribb et Barker, 1996 (digestive tract) [3]
*Dige*: Ope: Allopodocoyle epinepheli (digestive tract) [5]
*Dige*: Ope: Cainocreadium epinepheli (digestive tract) [5]
*Dige*: Hel: Helicometra epinepheli (Yamaguti, 1934) (digestive tract) [5]
*Tetr*: Unid: larvae (digestive tract) [0]
*Trypt*: Lac: Pseudolactostomochirus heroniensis larvae (body cavity) [0] (NHR)
*Trypt*: Ps: Pseudotobothrium dipsacum larvae (body cavity) [0] (NHR)
*Nema*: Anis: unidentified larvae (digestive tract) [0]
*Nema*: Pfl: Philomitra fasciati Moravec et Justine, 2008 (ovaries) [23][25]
*Turbellaria*: Unid: unidentified species (skin) [19]

**Remarks**: Based on examination of 92 specimens (45 for gills, 61 for abdominal organs).

Host-parasite combinations: 21; with species-level identification: 10.

**Epinephelus fuscoguttatus** (Forsskål, 1775)

*Isop*: Gnat: Praniaza larvae (gills) [0]
*Cope*: Cali: Lepeophtheirus sp. (gills) [0]
*Cope*: Hats: Hatschekia n. sp. 5 (gills) [0]
*Cope*: Siph: larvae (gills) [0]
*Mono*: Caps: Trochopodinae sp. 4 of Perkins et al. (2009) (gills) [0]
*Mono*: Dipl: Pseudorhabdosynochus sp. 1 (gills) [0]
*Mono*: Dipl: Pseudorhabdosynochus sp. 2 (gills) [0]
*Nema*: Anis: unidentified larvae (digestive tract) [0]

**Remarks**: Based on examination of 2 specimens (2 for gills, 1 for abdominal organs).

Host-parasite combinations: 8; with species-level identification: 0.

**Epinephelus howlandi** (Günther, 1873)

*Isop*: Cymo: Elhaba sp. (gills) [0]
*Mono*: Dipl: Pseudorhabdosynochus venus Hinsinger et Justine, 2006 (gills) [6]
*Mono*: Dipl: Pseudorhabdosynochus cyathus Hinsinger et Justine, 2006 (gills) [7]
*Trypt*: Lac: Pseudolactostomochirus heroniensis larvae (body cavity) [0] (NHR)
*Nema*: Anis: unidentified larvae (digestive tract) [0]

**Remarks**: Based on examination of 24 specimens (23 for gills, 3 for abdominal organs).

Host-parasite combinations: 5; with species-level identification: 3.

**Epinephelus maculatus** (Bloch, 1790)

*Isop*: Gnat: Praniaza larvae (gills) [0]
*Cope*: Cali: Lepeophtheirus epinepheli (gills) [0] (NHR)
*Cope*: Diss: Dissosoma manteri (gills) [2]
*Cope*: Hats: Hatschekia n. sp. 1 (gills) [0]
*Cope*: Hats: Hatschekia n. sp. 10 (gills) [0]
*Cope*: Penn: larvae (gills) [0]
*Mono*: Caps: unidentified (gills) [0]
*Mono*: Dipl: Diplectanum uito Justine, 2007
*Mono*: Dipl: Laticola dae Journo et Justine, 2006 (gills) [8]
*Dige*: Acan: Stephanostomum japonocasum (digestive tract) [0]
*Dige*: Buce: Prosorhynchus longissacatus (digestive tract) [0] (NHR*)
*Dige*: Didy: unidentified adults (gills, orbit, branchiostegal membranes) [0]
*Dige*: Didy: unidentified larvae (digestive tract, swim bladder) [0]
*Dige*: Hemi: Eripleurus hamati (digestive tract) [0]
*Dige*: Hemi: Lecithochirium sp. 1 (digestive tract) [0]
*Dige*: Hemi: Lecithochirium sp. 2 (digestive tract) [0]
*Dige*: Hemi: Aphanurus sp. (digestive tract) [0]
*Dige*: Hemi: Tubuloeschistus angusticauda (Nicoll, 1915) (digestive tract) [0] (NHR) (NGR)
*Dige*: Lepe: Lepeophtheirus angustoe (gall bladder) [0] (NHR)
*Dige*: Ope: Cainocreadium epinepheli (digestive tract) [0] (NHR)
*Dige*: Ope: Helicometra epinepheli (digestive tract) [0] (NHR)
*Both*: Unid: larvae (flesh) [0]
*Tetr*: Unid: larvae (digestive tract) [0]
*Trypt*: Otob: Otobothrium sp. larvae (body cavity) [0]
*Nema*: Cama: unidentified species (digestive tract) [0]
*Nema*: Anis: unidentified larvae (digestive tract) [0]

**Remarks**: Based on examination of 62 specimens (38 for gills, 38 for abdominal organs).

Host-parasite combinations: 36; with species-level identification: 19.

**Epinephelus malabaricus** (Bloch et Schneider, 1801)

*Isop*: Cora: Argathona rhinoceros (gills) [0]
*Cope*: Hats: Hatschekia n. sp. 6 (gills) [0]
*Cope*: Cali: Lepeophtheirus plecotrepi (gills) [0] (NHR)
*Cope*: Siph: chalimus larvae (gills) [0]
*Mono*: Anecy: Halotrema sp. 1 (gills) [20]
*Mono*: Anecy: Halotrema sp. 2 (gills) [20]
*Mono*: Caps: Aliobenedenia sp. (gills) [0]
*Mono*: Dipl: Diplectanum maacensis Justine et Sigura, 2007 (gills) [20]
*Mono*: Dipl: Pseudorhabdosynochus cr. shenzenensis (gills) [20]
*Mono*: Dipl: Pseudorhabdosynochus maacensis Justine et Sigura, 2007 (gills) [20]
*Mono*: Dipl: Pseudorhabdosynochus malabaricus Justine et Sigura, 2007 (gills) [20]
*Mono*: Dipl: Pseudorhabdosynochus manifestas Justine et Sigura, 2007 (gills) [20]
*Mono*: Dipl: Pseudorhabdosynochus manipulus Justine et Sigura, 2007 (gills) [20]
*Mono*: Dipl: Pseudorhabdosynochus marcellus Justine et Sigura, 2007 (gills) [20]
*Mono*: Dipl: Pseudorhabdosynochus venus Justine et Sigura, 2007 (gills) [20]
*Mono*: Dipl: Pseudorhabdosynochus venus Justine et Sigura, 2007 (gills) [20]
*Dige*: Buce: Prosorhynchus longissacatus (digestive tract) [0]
*Trypt*: Lac: Pseudolactostomochirus heroniensis larvae (body cavity) [0]
*Trypt*: Ps: Pseudotobothrium dipsacum larvae (body cavity) [0]
*Nema*: Unid: (digestive tract)

**Remarks**: Based on examination of 2 specimens (2 for gills, 2 for abdominal organs).

Host-parasite combinations: 20; with species-level identification: 12.

An exhaustive comparison of the parasitic fauna of this species in various locations was performed (Justine and Sigura 2007).
Epinephelus merra

 Bloch, 1793

**Cope:** Cali: Lepeophtheirae sp. (gills) [0]
**Cope:** Lern: Sagum epinepheli (gills) [0] (NHR)
**Cope:** Penn: larvae (gills) [0]
**Cope:** Siph: larvae (gills) [0]

**Mono:** Dipl: Pseudohabdosynochus melanesiensis Laird, 1958 (gills) [9]
**Mono:** Dipl: Pseudohabdosynochus cf. coito(the)is [7] (Valenciennes, 1833)
**Mono:** Caps: unidentified Benedeniinae [6] (Bleeker, 1857)

**Dige:** Opec: Helicometra epinepheli Yamaguti, 1934 (digestive tract) [5]

**Remarks:** Based on examination of 5 specimens (5 for gills, 6 for abdominal organs).

Host-parasite combinations: 15; with species-level identification: 5.

Epinephelus merra

(Isop.)

**Gnat:** Praniza larvae (gills) [0]
**Gnat:** Hats: Hatschekia cernac Goggio, 1905 (gills) [0] (NHR)
**Gnat:** Hats: Hatschekia n. sp. 4 (gills) [0]
**Gnat:** Lern: Sagum epinepheli (gills) [0] (NHR)
**Caps:** Unidentified immature (gills) [0]

**Dipl:** Pseudohabdosynochus merra, 1934 (gills) [8]
**Dipl:** Mono: Pseudohabdosynochus variabilis Justine, 2008 (gills) [14]

**Dige:** Bive: Bivescula sp. (digestive tract) [0]
**Dige:** Buce: Prosorhynchus sp. (digestive tract) [0]
**Dige:** Didy: unidentified larvae (gills)
**Dige:** Opec: Catenosynochus epinepheli (digestive tract) [0]

**Tryp:** unidentified larvae (digestive tract) [0]
**Tryp:** unidentified larvae (body cavity) [0]

**Nema:** Anis: unidentified larvae (digestive tract) [0]

**Acantho:** unidentified acanthocephalan species (digestive tract) [0]

**Remarks:** Based on examination of 5 specimens (5 for gills, 4 for abdominal organs).

Host-parasite combinations: 15; with species-level identification: 5.

Epinephelus polyelekandion

(Bleeker, 1849)

**Isop:** Gn: Praniza larvae (gills) [0]
**Caps:** Benedenia n. sp. 1 (gills) [0]
**Mono:** Dipl: Pseudohabdosynochus merra, 1934 (gills) [8]
**Mono:** Dipl: Pseudohabdosynochus merra, 1934 (gills) [8]
**Mono:** Dipl: Pseudohabdosynochus merra, 1934 (gills) [8]

**Dige:** Didy: unidentified adults (muscles) [0]
**Dige:** Hem: Lecithochirum sp. (digestive tract) [0]
**Both:** Unid: larvae (flesh) [0]

**Tryp:** Laci: Pseudolachistochirius herionii larvae (body cavity) [0] (NHR)

**Remarks:** Based on examination of 8 specimens (6 for gills, 3 for abdominal organs).

Host-parasite combinations: 10; with species-level identification: 1.

Epinephelus retouti

(Bleeker, 1868)

**Mono:** Dipl: Pseudohabdosynochus cupatus-group n. sp.

**Dige:** Acan: Stephanotomum japonicum (digestive tract) [0]
**Dige:** Didy: unidentified larvae (digestive tract) [0]
**Dige:** Hem: Lecithochirum sp. (digestive tract) [0]

**Tryp:** Pseu: Pseudotobothrium dipsacum larvae (body cavity) [0] (NHR)

**Nema:** Anis: unidentified larvae (digestive tract) [0]
**Nema:** Cama: unidentified (digestive tract) [0]

**Remarks:** Based on examination of 2 specimens (1 for gills, 2 for abdominal organs).

Host-parasite combinations: 7; with species-level identification: 2.

Epinephelus rivulatus

(Valenciennes, 1830)

**Isop:** Gn: Praniza larvae (gills) [0]

**Cope:** Hats: Hatschekia sp. 1 (gills) [0]
**Mono:** Caps: unidentified immature (gills) [0]

**Dipl:** Pseudohabdosynochus calabrius Hinsinger et Justine, 2006 (gills) [7]
**Dipl:** Pseudohabdosynochus inversus Justine, 2008 (gills) [15]
**Dige:** Didy: unidentified larvae (digestive tract) [0]
**Dige:** Hemi: Lecithochirum sp (digestive tract) [0]

**Tetr:** Unid: larvae (digestive tract) [0]

**Tryp:** Laci: Pseudolachistochirius herionii larvae (body cavity) [0] (NHR)
**Tryp:** Laci: Callitetrarhynchus gracilis larvae (body cavity) [0] (NHR)

**Nema:** Phil: Philometra ocellaris (orbit) [2]

**Remarks:** Based on examination of 14 specimens (14 for gills, 8 for abdominal organs).

Host-parasite combinations: 11; with species-level identification: 5.

Plectropomus laevis

(Lacépède, 1801)

**Isop:** Cora: Argathona macronema (Bleeker, 1857) (gills) [0] (NHR)

**Cope:** Diss: Dissomus manteri (gills) [2]
**Caps:** Hats: Hatschekia plectropomi Ho et Dojiri, 1978 (gills) [0] (NHR)

**Cope:** Penn: larvae (gills) [0]

**Mono:** Dipl: Echinoplectanum laevetus Justine et Euzet, 2006 (gills) [18]
**Mono:** Dipl: Echinoplectanum laevetus Justine et Euzet, 2006 (gills) [18]

**Dige:** Buce: Prosorhynchus sp. (digestive tract) [0]
**Buce:** Neidhartia sp. 2 (digestive tract) [0]
**Dige:** Opec: unidentified immature (digestive tract) [0]

**Both:** Unid: larvae (digestive tract) [0]

**Tryp:** Laci: Pseudolachistochirius herionii larvae (body cavity) [0] (NHr)
**Tryp:** Laci: Pseudolachistochirius herionii larvae (body cavity) [0] (NHr)

**Tryp:** Pseu: Pseudotobothrium dipsacum larvae (body cavity) [0] (NHR)

**Nema:** Capi: unidentified species (digestive tract) [0]

**Nema:** Anis: Hysterolyacium sp. larvae (digestive tract) [0]

**Remarks:** Based on examination of 14 specimens (14 for gills, 6 for abdominal organs).

Host-parasite combinations: 15; with species-level identification: 8.

Plectropomus leopardus

(Lacépède, 1802)

**Isop.:** Cora: Argathona macronema (gills) [0]

**Isop.:** Cora: Argathona rhinoceros (gills) [0]

**Cope:** Cali: Lepeophtheirae sp. (gills) [0]

**Cope:** Dissonus manteri (gills) [2]
**Cope:** Lern: Sagum epinepheli (gills) [0] (NHR)
**Cope:** Hats: Hatschekia plectropomi (gills) [0] (NHR)
**Cope:** Penn: larvae (gills) [0]

**Mono:** Dipl: Echinoplectanum laevetus Justine et Euzet, 2006 (gills) [18]
**Mono:** Dipl: Echinoplectanum laevetus Justine et Euzet, 2006 (gills) [18]

**Dige:** Buce: Prosorhynchus sp. (digestive tract) [0]
**Dige:** Neidhartia sp. 1 (digestive tract) [0]
**Dige:** Buce: Prosorhynchus sp. (digestive tract) [0]
**Dige:** Buce: Neidhartia sp. 2 (digestive tract) [0]

**Tryp:** Opec: Pacifichiridium serrani (Nagaty et Abdel-Aal, 1962) (digestive tract) [5]
Tetr: Unid: larvae (digestive tract) [0]
Tryp: Laci: Floriceps minacanthus larvae (body cavity) [0] (NGR)
Tryp: Laci: Ctenochaetus strigosus larvae (body cavity) [0] (NGR)
Tryp: Pseu: Pseudobothrium dipsacum larvae (body cavity) [0] (NGR)
Nema: Cap: unidentified adult (digestive tract) [0]
Remarks: Based on examination of 42 specimens (21 for gills, 24 for abdominal organs).
Host-parasite combinations: 20; with species-level identification: 12.

**Variola albimarginata** Baisasc, 1952
Isop: Gn: Praniza larvae (gills) [0]
Cope: Hats: Hatschekia n. sp. 1 (gills) [0]
Cope: Hats: Hatschekia n. sp. 8 (gills) [0]
Mono: Ancy: Halioptera cf. epinepheli (gills) [0]
Dige: Buce: Prosorhynchus serrani Durio et Manter, 1968 (digestive tract) [0]
Nema: Anis: Terranova sp. larvae (digestive tract) [0]
Nema: Cama: Procamallanus larvae (digestive tract) [25]
Nema: Cama: Cucullanus sp. (digestive tract) [0]
Remarks: Based on examination of 4 specimens (4 for gills, 2 for abdominal organs).
Host-parasite combinations: 8; with species-level identification: 2.

**Variola louti** (Forskål, 1775)
Isop: Gn: Praniza larvae (gills) [0]
Cope: Hats: Hatschekia n. sp. 1 (gills) [0]

### Appendix 2: Parasite-host list

<table>
<thead>
<tr>
<th>Isopoda (5 ‘species’; 3 identified species)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Coras:</strong> Aragona macrocera (NGR)</td>
</tr>
<tr>
<td>Plectropomus laevis (NHR)</td>
</tr>
<tr>
<td>Plectropomus leopardus</td>
</tr>
<tr>
<td><strong>Coras:</strong> Aragona rhinoceros (NGR)</td>
</tr>
<tr>
<td>Epinephelus cyanopodus (NHR)</td>
</tr>
<tr>
<td>Epinephelus malabaricus</td>
</tr>
<tr>
<td>Plectropomus leopardus</td>
</tr>
<tr>
<td><strong>Coras:</strong> Lanocira zeylanica (NGR)</td>
</tr>
<tr>
<td>Cephalopholis boenak (NHR)</td>
</tr>
<tr>
<td><strong>Cymo:</strong> Ethusa sp.</td>
</tr>
<tr>
<td>Epinephelus howlandi</td>
</tr>
<tr>
<td><strong>Gnat:</strong> Praniza larvae</td>
</tr>
<tr>
<td>Cephalopholis argus</td>
</tr>
<tr>
<td>Cephalopholis boenak</td>
</tr>
<tr>
<td>Cephalopholis sordida</td>
</tr>
<tr>
<td>Epinephelus andratus</td>
</tr>
<tr>
<td>Epinephelus antiradius</td>
</tr>
<tr>
<td>Epinephelus fuscoguttatus</td>
</tr>
<tr>
<td>Epinephelus maculatus</td>
</tr>
<tr>
<td>Epinephelus molgaura</td>
</tr>
<tr>
<td>Epinephelus polychadion</td>
</tr>
<tr>
<td>Epinephelus variola louti</td>
</tr>
<tr>
<td><strong>Copepoda (19 ‘species’; 7 identified species)</strong></td>
</tr>
<tr>
<td><strong>Cali:</strong> Calligus asymmetricus</td>
</tr>
<tr>
<td>Epinephelus cyanopodus (NHR)</td>
</tr>
<tr>
<td><strong>Cali:</strong> Calligus n. sp.</td>
</tr>
<tr>
<td>Epinephelus fasciatus</td>
</tr>
<tr>
<td><strong>Cali:</strong> Lepeophtheirus epinepheli</td>
</tr>
<tr>
<td>Epinephelus coeruleopunctatus (NHR)</td>
</tr>
<tr>
<td>Epinephelus maculatus (NHR)</td>
</tr>
<tr>
<td><strong>Cali:</strong> Lepeophtheirus lectopompi</td>
</tr>
<tr>
<td>Epinephelus cyanopodus (NHR)</td>
</tr>
<tr>
<td>Epinephelus malabaricus (NHR)</td>
</tr>
<tr>
<td><strong>Cali:</strong> Lepeophtheirus spinipunctatus</td>
</tr>
<tr>
<td>Epinephelus cyanopodus (NHR)</td>
</tr>
<tr>
<td>Epinephelus malabaricus (NHR)</td>
</tr>
<tr>
<td><strong>Cali:</strong> Lepeophtheirus spinipunctatus</td>
</tr>
<tr>
<td>Epinephelus cyanopodus (NHR)</td>
</tr>
<tr>
<td>Epinephelus malabaricus (NHR)</td>
</tr>
<tr>
<td><strong>Cali:</strong> Lepeophtheirus spinipunctatus</td>
</tr>
<tr>
<td>Epinephelus cyanopodus (NHR)</td>
</tr>
<tr>
<td>Epinephelus malabaricus (NHR)</td>
</tr>
</tbody>
</table>

| Cope: Hats: Hatschekia n. sp. 8 (gills) [0] |
| Cope: Siph: Larvae (gills) [0]              |
| Mono: Dipl: Prosorhynchus laevis Justine, 2005 |
| Mono: Ancy: Halioptera cf. epinepheli (gills) [10] |
| Dige: Acan: Stephanostomum japonosacum (digestive tract) [0] |
| Dige: Buce: Prosorhynchus serrani (digestive tract) [3] |
| Dige: Did: unidentified adults (body) [0]    |
| Dige: Did: unidentified larvae (digestive tract) [0] |
| Dige: Opec: Cninochlamys epinepheli (digestive tract) [5] |
| Dige: Opec: Pacificreadium serrani (digestive tract) [0] |
| Tryp: Laci: Callitetranychus gracilis larvae (body cavity) [0] (NHR) |
| Tryp: Laci: Floriceps minacanthus larvae (body cavity) [0] (NGR) |
| Tryp: Laci: Dissectoria cf. iomentacea (Diesing, 1850) larvae (body cavity) [0] |
| Tryp: Pseu: Pseudobothrium dipsacum larvae (body cavity) [0] (NGR) |

| Nema: Phil: Philometra ocularis (orbit) [25] |
| Nema: Cama: Procamallanus sp. (digestive tract) [0] |
| Nema: Cama: Cucullanus sp. (digestive tract) [0] |
| Nema: Anis: Terranova sp. larvae (digestive tract) [0] |
| Remarks: Based on examination of 34 specimens (28 for gills, 18 for abdominal organs). |
| Host-parasite combinations: 20; with species-level identification: 9. |
| Additional records: Prosorhynchus serrani was described from the same host in New Caledonia (Durio and Manter 1968a); this is confirmed by our findings. |

<table>
<thead>
<tr>
<th>Mannogena (56 ‘species’; 42 identified species)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ancy:</strong> Halioptera cf. cromileptis</td>
</tr>
<tr>
<td>Cronileptes alvitels</td>
</tr>
<tr>
<td><strong>Ancy:</strong> Halioptera cf. epinepheli</td>
</tr>
<tr>
<td>Epinephelus maculatus</td>
</tr>
<tr>
<td>Variola albimarginata</td>
</tr>
<tr>
<td><strong>Ancy:</strong> Halioptera spp.</td>
</tr>
<tr>
<td>Cephalopholis sonnerati</td>
</tr>
<tr>
<td>Epinephelus epinepheli</td>
</tr>
<tr>
<td>Epinephelus coeruleopunctatus</td>
</tr>
<tr>
<td>Epinephelus coeruleopunctatus</td>
</tr>
<tr>
<td>Epinephelus coeruleopunctatus</td>
</tr>
<tr>
<td>Epinephelus maculatus</td>
</tr>
<tr>
<td>Epinephelus malabaricus</td>
</tr>
<tr>
<td>Epinephelus variola louti</td>
</tr>
</tbody>
</table>

| Caps: Allobenedenia cf. epinepheli           |
| Epinephelus maculatus                        |
| Epinephelus coeruleopunctatus                |
| Caps: Allobenedenia spp.                     |
| Epinephelus cyanopodus                       |
| Epinephelus malabaricus                     |
Caps: Benedenia cf. epinepheli
Epinephelus fasciatus
Epinephelus polyphemoidion
Caps: Unidentified Benedeniinae spp.
Cephalopholis miniata
Cephalopholis sonnerati
Epinephelus merra
Caps: Trochopodinae sp. 2 of Perkins et al. 2009
Plectromorus leopardus
Caps: Trochopodinae sp. 4 of Perkins et al. 2009
Epinephelus fasciatus
dipl: Diplectanum maa
Epinephelus malabaricus
dipl: Diplectanum uitoe
Epinephelus merra
Epinephelus cyanopodus
dipl: Diplectanum nanus
Cephalopholis urodeta
Cephalopholis sonnerati
Epinephelus rivulatus
dipl: Diplectanum parvus
Cephalopholis urodeta
Epinephelus merra
Caps: Diplectanum spp.
Cephalopholis miniata
Epinephelus areolatus
Epinephelus merra
dipl: Echinoplectanum chauvetorum
Plectromorus laevis
dipl: Echinoplectanum laeve
Plectromorus laevis
dipl: Echinoplectanum leopardi
Plectromorus leopardus
dipl: Echinoplectanum pucidum
Plectromorus leopardus
dipl: Echinoplectanum rarum
Plectromorus leopardus
dipl: Latiloka cyanus
Epinephelus cyanopodus
dipl: Latiloka dae
Epinephelus maculatus
dipl: Pseudorhabdosynochus argus
Cephalopholis argus
dipl: Pseudorhabdosynochus auetoe
Epinephelus maculatus
dipl: Pseudorhabdosynochus buccus
Epinephelus maculatus
dipl: Pseudorhabdosynochus buitoe
Epinephelus maculatus
dipl: Pseudorhabdosynochus calathus
Epinephelus rivialus
dipl: Pseudorhabdosynochus caledonicus
Epinephelus fasciatus
dipl: Pseudorhabdosynochus chauveti
Epinephelus cyanopodus
dipl: Pseudorhabdosynochus cuitoe
Epinephelus maculatus
dipl: Pseudorhabdosynochus cyanopodus
Epinephelus cyanopodus
dipl: Pseudorhabdosynochus cyanopodus
Epinephelus maculatus
dipl: Pseudorhabdosynochus cyanopodus
Epinephelus merra
dipl: Pseudorhabdosynochus cyanopodus
Epinephelus polyphekadion
dipl: Pseudorhabdosynochus cyaneus
Epinephelus merra
dipl: Pseudorhabdosynochus exotics
Epinephelus cyanopodus
dipl: Pseudorhabdosynochus fuitoe
Epinephelus maculatus
dipl: Pseudorhabdosynochus gaitoe
Epinephelus maculatus
dipl: Pseudorhabdosynochus huitoe
Epinephelus maculatus
dipl: Pseudorhabdosynochus inverse
Epinephelus maculatus
dipl: Pseudorhabdosynochus maculatus
Epinephelus maculatus
dipl: Pseudorhabdosynochus melanensis
Epinephelus merra
dipl: Pseudorhabdosynochus minutus
Cephalopholis sonnerati
dipl: Pseudorhabdosynochus morrhua
Epinephelus morrhua
dipl: Pseudorhabdosynochus podocyanus
Epinephelus cyanopodus
dipl: Pseudorhabdosynochus variabilis
Epinephelus morrhua
dipl: Pseudorhabdosynochus venus
Epinephelus howlandi
dipl: Pseudorhabdosynochus youngi
Epinephelus fasciatus
dipl: Pseudorhabdosynochus cyaneus
Epinephelus merra
dipl: Pseudorhabdosynochus cyaneus
Epinephelus fasciatus
dipl: Pseudorhabdosynochus cyaneus
Epinephelus chlorostigma
Epinephelus merra
Epinephelus opec:
Acant: Stephanostomum japonicum
Cephalopholis urdota
Epinephelus areolatus
Epinephelus chlorostigma
Epinephelus maculatus (NHR*)
Epinephelus maculatus
Epinephelus merra
Bive: Biviscusula sp.
Epinephelus chlorostigma
Epinephelus fasciatus
Epinephelus merra
Buce: Neidhartia sp. 1
Plectromorus leopardus
Buce: Neidhartia sp. 2
Plectromorus laevis
Plectromorus leopardus
Buce: Prosorhynchus longisscactus
Epinephelus areolatus (NHR*)
Epinephelus cyanopodus
Epinephelus maculatus (NHR*)
Buce: Prosorhynchus manerbas
Epinephelus malabaricus
Buce: Prosorhynchus robertshomsoni
Cephalopholis argus
Buce: Prosorhynchus sarrani
Variola alimarginata
Variola laevis
Buce: Prosorhynchus sp.
Cephalopholis urdota
Epinephelus chlorostigma
Epinephelus fasciatus
Epinephelus maculatus
Epinephelus polyphekadion
Variola laevis
Dero: Derogenes-ike sp.
Epinephelus coeruleopunctatus
Didy: Unidentified adult
Cephalopholis miniata
Epinephelus chlorostigma
Epinephelus cyanopodus
Epinephelus fasciatus
Epinephelus merra
Epinephelus maculatus
Epinephelus polyphekadion
Variola laevis
Fell: Tergestia sp.
Epinephelus cyanopodus
Gorg: Phylodistomum sp.
Epinephelus fasciatus
Hemi: Erleiptllus hamati
Epinephelus cyanopodus
Epinephelus maculatus
Hemi: Lecithocharium sp.
Epinephelus chlorostigma
Epinephelus fasciatus
Epinephelus maculatus
Epinephelus polyphekadion
Epinephelus retoouti
Epinephelus rivulatus
Variola laevis
Hemi: Alvanus sp.
Epinephelus maculatus
Hemi: Tubulovesicula angusta
Epinephelus maculatus
Hemi: Unidentified species
Epinephelus merra
Lepo: Leptadepoides angustas
Epinephelus fasciatus
Epinephelus maculatus
Opec: Allopodocypele epinepheli
Epinephelus cyanopodus
Epinephelus fasciatus
Epinephelus merra
Cestoda Tetraphyllidea
Cestoda Bothriocephalidea

Appendix 3: Material deposited
* type material

Justine et al.: Parasite biodiversity in groupers


Dipl. Pseudorhabdosynochus calathus ex Ep. maculatus, MNHN JNC1659, 1902.


REFERENCES


de Recherche pour le Développement, Nouméa, New Caledonia, pp. 357–401.


JUSTINE J.-L., Euzet L. 2006: Diplectanids (Monogenea) parasitic on the gills of the coralgroupers Plectropomus laevis and P. leopar dus (Perciformes, Serranidae) off New Caledonia, with the description of five new species and the erection of Echinoplectanum n. g. Syst. Parasitol. 64: 147–172.


LAFERTY K.D., SHAW J.C., KURIS A.M. 2008: Reef fishes have higher parasite richness at unfished Palmyra Atoll compared to fished Kirimati Island. EcolHealth 5: 338–345.


MORAVEC F., JUSTINE J.-L. 2009: New data on dracunculoid nematodes from fishes off New Caledonia, including four new species of Philometra (Philometridae) and Ichthyofilaria (Guyanidae). Folia Parasitol. 56: 129–142.


SiGuRa A., JustiNe J.-l. 2008: Monogenes of the speckled blue grouper, Epinephelus cyanopodus (Percomformes, Serranidae), from off New Caledonia, with a description of four new species of Pseudorhabdosynochus and one new species of Laticola (Monogenea: Diplectanidae), and evidence of monogenean faunal changes according to the size of fish. Zootaxa 1695: 1–44.


Received 10 October 2009

262