Evaluation of anti-leishmanial effects of killed *Leishmania* vaccine with BCG adjuvant in BALB/c mice infected with *Leishmania major* MRHO/IR/75/ER

Hossein Nahrevanian¹, Seyedeh Parisa Jafary², Sara Nemati¹, Mahin Farahmand¹ and Eskandar Omidinia³

¹Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran; ²Islamic Azad University of Oloom Tahghighat, Tehran, Iran; ³Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran

Abstract: There are many strategies to control leishmaniasis, but majority of them are inadequate. Killed *Leishmania* vaccine (KLV) has been applied for its immunogenicity in human and mouse model. Bacillus Calmette-Guerin (BCG) as adjuvant is an immune-modulator inducing humoral and cellular immune responses during zoonotic cutaneous leishmaniasis (ZCL). Both KLV and BCG have been applied for their immune responses in hosts for controlling leishmaniasis. In this study, KLV and BCG were applied to inhibit replication and visceralization of *Leishmania major* in BALB/c mice. Mice were injected with KLV and BCG, followed by infection with promastigotes of *L. major*. Six weeks after infection, a small nodule appeared, which was followed by development of a large lesion and visceralization. Effects of KLV and BCG, physiopathological changes, lesion size, delay of lesion formation, proliferation of amastigotes inside macrophages and detection of amastigotes in target organs were studied. Results showed that the KLV had anti-leishmanial activity by reducing lesion size on late infection. In KLV and BCG group, the average number of amastigotes in macrophages was lower than in other groups. Significant reductions in number of amastigotes in both spleen and lymph node were observed, indicating lower visceralization of *Leishmania* parasites in these target organs. No significant changes were presented in body weights, survival rates and degrees of splenomegaly in test group. It can be concluded that application of KLV and BCG had acceptable efficacy in reduction of skin lesions size and proliferation of parasites, even though a few side-effects were observed. It is indicated that KLV/BCG may have ability to modulate host immune responses against *Leishmania* parasites and to reduce pathophysiology of the disease during infection.

Keywords: vaccine, KLV, adjuvant, *Leishmania major*, immunization, Iran

Leishmaniasis is one of the most important infectious diseases worldwide, causing a spectrum of manifestations ranging from asymptomatic infections and mild self-healing cutaneous disease to severe non-healing diffuse cutaneous (CL) and visceral leishmaniasis (VL) (Manson-Bahr and Apted 1983). Cutaneous form of leishmaniasis caused by *Leishmania major* (Leishman, 1903) (NCBI ID: 5664) and *L. tropica* (Wright, 1903) (NCBI ID: 5666), which is endemic in more than 80 countries, with 90% cases reported in six countries only, namely Afghanistan, Brazil, Iran, Peru, Saudi Arabia and Syria. CL is an important public health problem in many parts of Iran (Klaus et al. 1999).

Lesions are characterized by development of nodules, which progress to ulcerative lesions. Immune responses during leishmaniasis include antibodies, cytokines, immune cells, mediators and acute phase proteins (Pearson et al. 1983). In CL, various phagocytes predominant in the skin, including neutrophils, macrophages and dendritic cells, play distinct roles for the host’s immune responses (Scott 2005).

The main line of treatment in leishmaniasis is pentavalent antimonials such as meglumine antimoniate or Glucantime. These antimonials were first introduced in 1945 and remain effective treatments for some forms of leishmaniasis. However, long periods of parenteral administration, variable efficacy against CL and VL, some side effects and the emergence of significant resistance are all factors that limit the usefulness of these drugs (Roberts et al. 1998). Vector control is insufficient and complicated due to the diverse ecology of different species of sand fly vectors and animal reservoirs. In addition, existing treatments are expensive and effective vaccines against leishmaniasis currently do not exist (Noazin et al. 2009). The high prevalence of leishmaniasis and the resistance to conventional drugs demonstrate the need for novel targets with lower toxicity and more efficiency (UNDP/World Bank/WHO 1997).

The development of an affordable vaccine is considered the only cost-effective means to control this type of leishmaniasis. Moreover, vaccination with parasites (leishmanization) has been used as an immunisation...
method in Iran (Nadim and Javadian 1988), Israel (Green et al. 1983) and former Soviet republics Turkmenistan and Uzbekistan (Kobets et al. 2012), but was abandoned because of the occurrence of a small proportion of chronic cases, which required long time treatment. Vaccination (leishmanization) with live parasites was practiced in the Middle East, but was later replaced with the use of killed Leishmania parasites for the protection against CL in both the Old and New World (Mohebali et al. 1995). The autoclave-killed L. major was used for leishmanization of about 2 million individuals in the 1980s in Iran and safety and immunogenicity of this vaccine was shown (Mohebali et al. 1995). In addition, positive results have been reported by successful vaccination against VL using intradermal inoculation of alum-precipitated autoclaved L. major (ALM) or L. donovani (ALD) with Bacillus Calmette-Guerin (BCG) in Indian langurs (Garg and Dube 2006). The significant efficacies of attenuated L. major vaccine were also demonstrated for a rhesus monkey model of the human disease (Amaral et al. 2002) and in dogs vaccinated with autoclaved L. major promastigotes (ALM) plus BCG in Iran (Mohebali et al. 2004). In addition, the pioneer use of killed Leishmania vaccine (KLV) plus BCG for immunotherapy was applied in Venezuela with considerable success (Convit et al. 1987). Application of KLV without BCG was reported to be safe in Brazil with limited protection (Mayrink et al. 1979, 1985, Antunes et al. 1986). Later, KLV plus BCG were successfully used for immunotherapy in localized cutaneous leishmaniasis in Venezuela (Convit et al. 1987).

Mycobacterium bovis BCG as adjuvant is inducing humoral and cellular immune responses during leishmaniasis. The ability of the two recombinant BCG strains to induce protective immunity against a challenge with L. major amastigotes was evaluated after vaccination of susceptible BALB/c and resistant C57BL/6 mice. They showed significant protection against a challenge with L. major in BALB/c-immunized mice (Nateghi Rostami et al. 2010, Smrkovský and Larson 1977b, Latifynia and Mohaghegh Hazrati 2008). Research on a vaccine against leishmaniasis in Iran began with the preparation of a KLV under manufacturing practices at the Razi Serum and Vaccine Research Institute (RSVDI), Hesarak, Karaj, Iran. KLV has been applied for its immunogenicity in both human and mouse model (Abdelhak et al. 1995). Inoculation of BCG was found to be both prophylactic and therapeutic in BALB/c mice against challenge with amastigotes of *Leishmania* (Smrkovský and Larson 1977a, b, Latifynia and Mohaghegh Hazrati 2008).

The objective of this study was to evaluate the protective effects of KLV with BCG on *L. major* infection in BALB/c mice. The inhibition of visceralization, differences of lesion sizes, duration of disease, rate of parasite proliferation inside macrophages and survival rate were studied to evaluate the efficacy of BCG + KLV.

MATERIALS AND METHODS

Animals. Female inbred SPF BALB/c mice 4–6 weeks old (supplied by the Karaj Laboratory Animal Unit, Pasteur Institute of Iran) were used in this study. The 18.2 ± 1.3 g (Mean ± Standard Error, SE) mice were housed at room temperature (20–23°C) on a 12 h light and 12 h dark cycle, with unlimited access to food and tap water. Experiments with animals were done according to the ethical standards and measures taken to protect animals from pain or discomfort. It has been approved by Ethical Committee of the Pasteur Institute of Iran, in which the work was done.

Leishmania parasite. Leishmania major MRHO/IR/75/ER used in this study was the standard Iranian strain. The infectivity of the parasites was maintained by regular passage in susceptible BALB/c mice. The parasites were cultured in the RPMI 1640 medium supplemented with 10% Fetal Bovine Serum (FBS), 292 μg/ml L-glutamine and 4.5 mg/ml glucose (all supplied by Sigma Aldrich). Under these culture conditions, the stationary phase of parasite growth was obtained in six days (Nahrevan et al. 2007).

Infection of BALB/c mice with L. major. Promastigotes of L. major were harvested from culture media, counted and used to infect BALB/c mice. The base of the tail was injected intradermally with inoculums of 2 × 10⁶ promastigotes. The animal experiments were performed once in five groups (n = 10 mice/group) considering time, budget and long-period monitoring of animals. The *Leishmania* infection was carried out in experimental animals and terminated at week 16 after injection.

Vaccine. The KLV used in this study was autoclaved L. major promastigotes prepared by RSVDI, Hesarak, Karaj, Iran and kindly donated by Department of Immunology, Pasteur Institute of Iran, Tehran, Iran. The vial content of vaccine was diluted with the normal saline to have a volume of 10 ml. Each mouse in KLV and KLV+BCG test groups received 100 μl of this solution per injection.

BCG. The lyophilized BCG vaccine (*Mycobacterium bovis*, Bacillus Calmette Guerin) was prepared in the Pasteur Institute of Iran and stored at 4°C until use. Just before injection, it was suspended in diluted solution SSI solvent (125 mg MgSO₄, 125 mg K₂HPO₄, 1 mg L-asparagine, H₂O, 12.5 mg Fe ammonium citrate, 18.4 mg 85% glycerol, 0.5 mg citric acid, 1 ml H₂O for injection/manufacturer’s insert) with 0.1 mg BCG. All doses were injected intradermally in susceptible BALB/c mice.

Experiments and groups. Animals used in this experiment were BALB/c mice, divided into five groups (10 mice/group) including Group 1 (Naive), Group 2 (KLV), Group 3 (BCG), Group 4 (KLV + BCG) and Group 5 (Control L. major). One week after the first KLV and BCG injections, the second phase as booster with the same dose was injected subcutaneously (s.c.) in abdominal area. The challenge of mice within groups 2 to 5 was carried out one hour after the second injection of KLV and BCG s.c. at the base of the tail by inoculation of 300 μl containing 10⁴ L. major promastigotes obtained from stationary phase of cultivation tubes.

Measurement of lesion size. Lesion size was measured at every other week after inoculation in millimetres (mm) by a digital caliper (Chuan Brand, China) in two diameters (D and d) at right angles to each other and the size (mm) was determined according to the formula: S = (D + d) divided by 2 (Erel et al. 1999).
Microscopical examinations and smear preparation. The clinical diagnosis was confirmed by laboratory demonstration of the parasite in the lesions by making stained smears at the end of the experimental period. Lesions were cleaned with ethanol and punctured at the margins with a sterile lancet and exudation material was smeared. Impression smears were prepared from the liver, spleen and lymph nodes by placing a small piece of tissue between two glass slides and pushing them in different directions. The smears were dried in air, fixed by methanol and stained with Giemsa for detection of amastigotes under light microscopy (El-On et al. 1986).

Measurement of proliferation of amastigotes. The proliferation of parasite was evaluated by counting amastigotes inside macrophages on Giemsa stained lesion smears at the end of the experimental period. Five random macrophages were selected and counted; mean percentages were calculated as indicators for the degree of proliferation of amastigotes inside each macrophage (Nahrevanian et al. 2007).

Assessment of degree of hepatosplenomegaly. Entire livers and spleens were removed post mortem at the end of the experimental period from mice after induction of terminal general anaesthesia by inhalation of diethyl ether (Sigma Aldrich). Organ wet weights were measured, expressed as ratio to body weight and compared with controls as indices for degree of hepatosplenomegaly.

Measurement of survival rate and body weight. Survival rate was presented as percentage of surviving experimental mice at every other week after inoculation; the significance of differences was compared with concurrent appropriate vehicle-treated Leishmania and control groups. Body weight was measured initially and at different time of experiment using a top pan balance (Ohaus scale Corp., USA).

Statistical analysis. Values are presented as the mean ± standard error (SE) for groups of n samples. The significance of differences was determined by One-Way Analysis of Variances (ANOVA) and Student’s t-test using Graph Pad Prism Software (Graph Pad, San Diego, California, USA) and Microsoft Excel 2007.

RESULTS

Healing of cutaneous lesions was studied by measurement of lesion sizes in both control and test groups. Saline had no effects on lesion size, but the group that received only KLV showed anti-leishmanial activity, as this compound reduced the lesion size significantly (P < 0.05) after 13 weeks of infection. There was no significant indication of BCG to limit lesion size in CL as presented in experimental groups (Fig. 1). The number of amastigotes in macrophages (MQ) of lesion samples represented a significant change, which is indicated in the group receiving KLV + BCG. In this group, the average number was lower than in the other groups (Fig. 2).

When considering visceralization of Leishmania parasite in target organs, it represented significant reductions in the number of amastigotes in both spleen (P < 0.01) and lymph node (P < 0.001) tissue smears. However, there was no significant difference based on parasite percentage in smears of liver tissue (Fig. 3). No significant changes were observed in body weights, survival rates and degrees of splenomegaly in test group compared with those in controls. Degree of hepatomegaly presented a significant change (P < 0.001) in the group that received only BCG in comparison with other groups (Fig. 4).

DISCUSSION

The group that received only KLV showed anti-leishmanial activity because this compound reduced the lesion size significantly after week 13 of infection. In a previous study of the present authors, application of KLV solely or with Imiquimod (IMQ) as adjuvant resulted in no changes in lesion size variations in BALB/c mice infected with the same Leishmania major strain (Salehizadeh et al. 2011). Evidence exists that BCG alone gives some protection against experimental leishmaniasis in mice (Smrkovski and Larson).
with similar parasite, host and methodology, in which applications of KLV and IMQ (as adjuvant) revealed no significant effects on the proliferation rate of amastigotes inside MQ (Salehizadeh et al. 2011). As in previous studies, lesions in mice given BCG before challenge with L. major were less severe and contained significantly fewer parasites than those of similarly infected control mice not given BCG (Stefani et al. 1993).

Although no variations were observed based on parasite percentage in liver smears, a significant decline in the number of amastigotes in both spleen and lymph node tissue smears as target organs was emphasized as inhibition of visceralization by KLV + BCG effects. This is in agreement with the authors’ previous study, indicating an observable inhibition of visceralization using KLV + IMQ in the liver and spleen. However, IMQ solely decreased the visceralization in the lymph nodes (Salehizadeh et al. 2011). This evidence highlights the important role of vaccine (KLV) and/or adjuvant (BCG) in control of visceral form of leishmaniasis; further studies are required to discuss this concept.

One major aspect in the use of vaccines is the assessment of side effects associated with vaccination. No significant changes were observed in pathophysiological effects due to KLV and BCG including body weights, survival rates and degrees of splenomegaly, which indicated the lowest toxicity of KLV/BCG and confirms results of our previous study on KLV + IMQ (Salehizadeh et al. 2011). Physiological parameters represented no pathological consequences on the host after vaccine (KLV) and adjuvant (BCG) injections, separate or in accompany. Therefore, they can be applied due to the minimum cytotoxic effects in BALB/c model of leishmaniasis. In this study, no serious life-threatening reactions were associated with the vaccine and adjuvant. The same findings were reported in some of the Iranian trials (Sharifi et al. 1998, Momeni et al. 1999).

Concluding remarks

Despite few negative aspects of KLV and BCG applications solely or in accompany in different clinical forms of leishmaniasis (Noazin et al. 2009, Jamshidi et al. 2011), acceptable efficacy of KLV + BCG is indicated here on reduction of lesion sizes, proliferation of amastigotes in MQs and visceralization of parasites in spleen and lymph nodes, which is in agreement with several published reports (Kamil et al. 2003, Mohebali et al. 2004, Khalil et al. 2006, Michel et al. 2006, Keshavarz Valian et al. 2008, Pereira et al. 2009, Nateghi Rostami et al. 2010, Soudi et al. 2011). It is indicated that KLV/BCG may have the ability to modulate host immune responses against parasite proliferation and to reduce pathophysiology of infection. Infection with L. major in mice indicates that a protective immune response is achieved when TH1 cells are developed. Thus, adoptive or vaccine-induced protection against leishmaniasis is largely dependent on cell-
mediated immunity and cytokine production (Pearson et al. 1983). Therefore, complementary investigations may be suggested on KLV and BCG using different doses and concentrations, the route of inoculation, different Leishmania strains and host species.

Acknowledgments. This study was supported by the Department of Parasitology, in collaboration with the Department of Biochemistry, at the Pasteur Institute of Iran. Some results presented in this manuscript form part of a MSc thesis (Seyedeh Parisa Jafary) from the Islamic Azad University of Oloom Tahghighat, Tehran, Iran under the first author supervision.

Fig. 4. Influence of KLV and BCG on pathophysiology. Pathophysiological parameters including body weights, survival rates and degrees of hepatosplenomegaly were assessed in experimental groups as described in the Materials and methods. The results expressed as mean ± SE. Significance of difference (*P < 0.05) was determined by ANOVA test using Graph Pad Prism and Microsoft Excel 2007 (n = 10 mice/group).

REFERENCES

JAMSHIDI SH., AVIZEH R., MOHEBALI M., BOKAI E. 2011: Immuno-
thapy using autoclaved L. major antigens and M. vaccae with
Meglumine antimoniate, for the treatment of experimental ca-
nine visceral leishmaniasis. Iran. J. Parasitol. 6: 26–34.

KAHALI A.A., KHALIL E.A., MUSS A.M., MODJABBER F., MEHTAB
M.M., IBRAHIM M.E., ZAHLILA E.E., SACKS D., SMITH P.G., ZICKER
F., EI-HASSAN A.M. 2003: Alum-precipitated autoclaved Leish-
mania major plus bacille Calmette-Guérin, a candidate vaccine for
visceral leishmaniasis: safety, skin-delayed type hypersensit-
ivity response and dose finding in healthy volunteers. Trans. R.

KESHAVARZ VALIAN H., KHOSHBAND ARDABILLI KENEDY L., NATEGH
ROSTAMI M., MIRAMIN MOHAMMADI A., KHAMESPOUR A. 2008:
Role of Mycobacterium vaccae in the protection induced by first
Generation Leishmania vaccine against murine model of leish-

KAHALI E.A., MUSS A.M., MODJABBER F., EI-HASSAN A.M. 2006:
Safety and immunogenicity of a candidate vaccine for visceral
leishmaniasis (Alum-precipitated autoclaved Leishmania major
atr. 26: 357–361.

KLASS S.N., FRANKENBURG S., INGBER A. 1999: Epidemiology of cu-

KOBET T., GHIEK M., LIPOLOVA M. 2012: Leishmaniasis: preven-
tion, parasite detection and treatment. Curr. Med. Chem. 19:
1443–1474.

LATFYNIA A., MOHAGHEGH HAZRATI S. 2008: Safety and toxicity of
a new formulated Leishmania major preliminary vaccine in ani-
mal model Balb/c and small white conventional laboratory mice.

MAKALLY-HAWKE 2010: Manson’s Tropical Diseases, 18th edition.

MAYRIN W., DA COSTA C.A., MAGALHÃES P.A., MELO M.N., DIAS
M., LIMA A.O., MICHAEL J.S., WILLIAM P. 1979: A field trial of
a vaccine against American dermal leishmaniasis. Trans. R.

MAYRIN W., WILLIAMS P., DA COSTA C.A., MAGALHÃES P.A., MELO
M.N., DIAS M., OLIVEIRA L.M., MICHAEL J.S., FERREIRA
Ferreira Carvalho E., BARROS G.C. 1985: An experimental vaccine
against American dermal leishmaniasis: experience in the state

MICHEL M.Y., FATHY F.M., HILAZY E.H., HUSSEIN E.D., ENNS M.M.,
SAID D.E. 2006: The adjuvant effects of IL-12 and BCG on auto-
claved Leishmania major vaccine in experimental cutaneous

MOHEBALI M., JAVADAN E.H., HASHEMI-FESHKARI R., MOHAMMAD
ZADEH M., NADIM A., TAHA-ALI-BIDRUNI G.H., MESDHAGHI A. 1995:
Trial of a nonliving crude vaccine against zoonotic cutaneous

MOHEBALI M., KHAMESPOUR A., MOBEDI Z., ZAREI Z., HASHEMI-
FESHKARI R. 2004: Double-blind randomized efficacy field trial of
alum precipitated autoclaved Leishmania major vaccine mixed
with BCG against canine visceral leishmaniasis in Meshkin-

MOMENI A.Z., JALAYER T., EMMADINEH M., KHAMESPOUR A., ZICKER
F., GHAHERZI R.L., DOWLATI Y., SHARIF A., AMINVAHARI M.,
SHAEBI A., ALMOHAMMADIAN M.H., HASHEMI-FESHKARI R., NAS-
SERRI K., GODAL T., SMITH P.G., MODJABBER F. 1999: A randomized
double-blind, controlled trial of killed L. major vaccine plus
BCG against zoonotic cutaneous leishmaniasis in Iran. Ann.
17: 466–472.

NADIM A., JAVADAN E. 1988: Leishmanization in the Islamic Repub-
l of Iran. In: B.C. Walton, P.M. Wijeyaratna and F. Modjabber
(Eds.), Research on Control Strategies for Leishmaniasis. Inter-

NAHREGHIAN H., FARKHAN M., AHIGHI Z., ASSMARR M., AMIRIKHAN
A. 2007: Pharmacological evaluation of anti-leishmanial ac-
tivity by in vivo nitric oxide modulation in Balb/c mice infected
with Leishmania major MRHO/IR/75/ER; an Iranian strain of

NATEGH ROSTAMI M., KESHAVARZ H., KHAMESPOUR A. 2010: Immune
response of BALB/c mice against an experimental vaccine of
Alum precipitated autoclaved Leishmania major (Alum-ALM)
mixed with BCG or Mycobacterium vaccae. Trop. Biomed. 27:
89–102.

NOAZIN S., KHAMESPOUR A., MOULTON L.H., TANNER M., NASSERI
K., MODJABBER F., SHARIF A., KHALIL E.A., BERNAL I.D., ANTONES
C.M., SMITH P.G. 2009: Efficacy of killed whole-parasite vac-
cines in the prevention of leishmaniasis: a meta-analysis. Vac-
cine 27: 4747–4753.

PEREIRA L.L., DORTA M.L., PEREIRA A.J., BASTOS R.P., OLIVEIRA M.A.,
PINTO S.A., GALDINO H.J., MAYRIN W., BARCELOS W., TOLEDO
V.P., LIMA G.M., RIBEIRO-DIAS F. 2009: Increase of NK cells and
proinflammatory monocytes are associated with the clinical im-
provement of diffuse cutaneous leishmaniasis after immunoche-
Hyg. 81: 378–383.

ROBERTS W.L., McMURRAY W.J., RAINIEY P.M. 1998: Characterization
of the antimonial antileishmanial agent meglumine antimoniate

SALEHZADEH E., NAHREGHIAN H., FARKHAN M., HAJTROSSEINI R.,
SAHIBI R., KHALIL E.A. 2011: In vivo application of killed Leish-
mania vaccine and Imiquimod as adjuvant in Balb/c mice infect-
ed with Leishmania major MRHO/IR/75/ER as Iranian strain.

Cell Microbiol. 7: 1707–1713.

SHARIFI I., FEKRI A.R., AFTOUNANI M.R., KHAMESPOUR A., NADIM
A., MOUSAVI M.R., MOMENI A.Z., DOWLATI Y., GODAL T., ZICKER
F., SMITH P.G., MODJABBER F. 1998: Randomised vaccine trial of
single dose of killed Leishmania major plus BCG against an-
throponotic cutaneous leishmaniasis in Bam, Iran. Lancet 351:
1540–1543.

SMIROKOVSKY L.L., LARKSON C.L. 1977a: Antigenic cross-reactivity be-
tween Mycobacterium bovis (BCG) and Leishmania donovani.

SMIROKOVSKY L.L., LARKSON C.L. 1977b: Effect of treatment with BCG
on the course of visceral leishmaniasis in BALB/c mice. Infect.
Immun. 16: 249–257.

SOUDI S., HOSEINI A.Z., HASEMI S.M. 2011: Co-administration of
rectal BCG and autoclaved Leishmania major induce protection

STEYFAN M.M., MILLER L., LOUIS J. 1993: Leishmania major infection
in BALB/c mice: protection or exacerbation by treatment with

UNDP/World Bank/WHO 1997: Tropical disease research: prog-
UNDP/World Bank/WHO, Special Programme for Research &
Training in Tropical Diseases, 149 pp. (http://www.who.int/trd/
publications/about-trd/progress-reports/progress-report-95-96/en/
index.html)

WEINTRAUB J., WEINRAUM F.J. 1977: The effect of BCG on experi-
mental cutaneous leishmaniasis in mice. J. Immunol. 118: 2288–
2290.

Accepted 14 September 2012