The feather mites of nightjars (Aves: Caprimulgidae), with descriptions of two new species from Brazil (Acari: Xolalgidae, Gabuciniidae)

Fabio Akashi Hernandes

Departamento de Zoologia, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil

Abstract: Two new species of feather mites are described from nightjars (Caprimulgiformes: Caprimulgidae) of Brazil: Hartingiella neotropica sp. n. (Xolalgidae) described from Hydropsalis parvula (Gould) and Paragabucinia brasiliensis sp. n. (Gabuciniidae) from H. albicollis (Gmelin). The former differs from the type species by having, in males, the anterior projections on epimerites III towards setae 3b and the anal shield bearing setae ps3 present; in both sexes, a pair of small sclerites situated posterior to setae se have flat suprategumental processes. Paragabucinia brasiliensis sp. n. differs from P. petitoti (Gaud et Mouchet, 1959) by the smaller size of the incisions in the internal margins of opisthosomal lobes of males. These mites are the first representatives of corresponding genera described from the Neotropical region. The genus Hartingiella Gaud, 1980 was previously known solely from its type species. Keys to males and females of the genus Paragabucinia Gaud et Atyeo, 1975 are presented. In addition, all previous records of feather mites associated with birds of the order Caprimulgiformes of the world are summarised.

Keywords: systematics, taxonomy, Neotropical region, Hartingiella, Paragabucinia

Nightjars (Aves: Caprimulgiformes: Caprimulgidae) are nocturnal insectivore birds, with approximately 90 species distributed worldwide (del Hoyo et al. 1999, Livesey and Zusi 2007). The feather mites associated with caprimulgiform birds are less known and relatively few species of mites have been described mainly from Africa (Gaud 1958, 1980, Gaud and Mouchet 1959, Gaud and Kolebinova 1973), with additional species being described or recorded from Australia (Atyeo 1979), Neotropics (Mironov and Fain 2003, Mironov 2011), and North America (Dabert and Ehrnsberger 1992). The only feather mite species described from a caprimulgiform in Brazil is Ascouracarus chordeili Mironov et Fain, 2003 described from Chordeiles rupestris (Spix) (Caprimulgidae). Enout et al. (2012) reported an undetermined species of Trouessartia Canestrini, 1899 (Trouessartiidae) on Hydropsalis albicollis (Gmelin).

In this paper two new species of feather mites are described from the genera Hartingiella Gaud, 1990 and Paragabucinia Gaud et Atyeo, 1975 from the families Xolalgidae and Gabuciniidae, respectively. An updated table of known associations of feather mites and birds of the order Caprimulgiformes of the world is presented (Table 1).

MATERIALS AND METHODS

Feather mites of Hydropsalis parvula (Gould) were collected from birds captured with mist-nets and visually examined in the field for the presence of mites. Whenever feather mites were detected, a feather was carefully cut off with a small scissors and stored in individual plastic bags; the birds were released back to the wild after the feather examination. Mites from Hydropsalis albicollis were collected in the laboratory from dead birds captured with mist-nets (authorized by IBAMA – Brazilian Institute of Environment and Renewable Natural Resources, license number 19849-1, authentication code 28111788, 27 April 2009). All mite specimens were mounted on glass slides in Hoyer’s medium (Krantz and Walter 2009).

Body measurements are given in micrometers and were taken as follows: idiosoma length from the anterior end of the prodorsal shield to lobar apices; idiosoma width was measured at the widest portion at the level of humeral shields; distance between setae of the same pair was taken as the direct distance between their bases and distance between different pairs is the direct distance formed by their bases at the same side of the body; dorsal shield length was measured as the greatest length from the anterior margin to the posterior end along the midline and width is the greatest width at the widest part. The chaetotaxy of the idiosoma and legs follows Griffiths et al. (1990) and Atyeo and Gaud (1966), respectively.
Table 1. Feather mites associated with birds of the order Caprimulgiformes of the world (sensu Livesey and Zusi 2007).

<table>
<thead>
<tr>
<th>Mite taxa</th>
<th>Bird host (Caprimulgiformes)</th>
<th>Locality</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaalgoidea</td>
<td>Ancylalgus harpicipilus (Trouessart, 1886)*</td>
<td>Podargus pappuensis*</td>
<td>New Guinea*</td>
</tr>
<tr>
<td>Ascoucaracidae</td>
<td>Ascoucarus chordellii (Mironov, 2003)</td>
<td>Chordeiles r. rupestris* (Caprimulgidae)</td>
<td>Brazil* (Amazonas)</td>
</tr>
<tr>
<td></td>
<td>Ascoucarus krosarovi (Vassilev, 1959)</td>
<td>Caprimulgus europaeus* (Caprimulgidae)</td>
<td>Bulgaria*</td>
</tr>
<tr>
<td></td>
<td>Ascoucarus michiganii (Dabert et Ehrnsberger, 1992)</td>
<td>Antrostomus vociferus* (Caprimulgidae)</td>
<td>USA* (Michigan)</td>
</tr>
<tr>
<td></td>
<td>Ascoucarus sp. (larvae)</td>
<td>Caprimulgus climacurus* (Caprimulgidae)</td>
<td>Cameroon*</td>
</tr>
<tr>
<td></td>
<td>Paragabucinia longicandata (Gaud, 1980)</td>
<td>Caprimulgus batisti*, C. fossilis (Caprimulgidae)</td>
<td>Zaire*</td>
</tr>
<tr>
<td></td>
<td>Paragabucinia petioti (Gaud et Mouchet, 1959)</td>
<td>Caprimulgus fossilis*, C. natalensis, C. climacurus (Caprimulgidae)</td>
<td>Cameroon* Zaire, Ghana (Côte de l’Or)</td>
</tr>
<tr>
<td></td>
<td>Paragabucinia brasiliensis (sp. n.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poeroididae</td>
<td>Pandalura oconori (Mironov, 2011)</td>
<td>Steatornis caripensis* (Steatornithidae)</td>
<td>Trinidad*</td>
</tr>
<tr>
<td>Poerodicidae</td>
<td>Aegothelica deficiens (Atyeo, 1979)</td>
<td>Aegotheles cristatus* (Nyctibiidae)</td>
<td>Australia (New South Whales)*</td>
</tr>
<tr>
<td></td>
<td>Nyctibioides megalermus (Atyeo, 1979)</td>
<td>Nyctibius griseus panamensis*, N. j. jamaicensis (Nyctibiidae)</td>
<td>Panama*, Jamaica</td>
</tr>
<tr>
<td></td>
<td>Nyctibioides simatus (Atyeo, 1979)</td>
<td>Nyctibius griseus panamensis* (Nyctibiidae)</td>
<td>Panama*</td>
</tr>
<tr>
<td></td>
<td>Gymnolichus sequus (Černy et Shumilo, 1961)</td>
<td>Caprimulgus europaeus* (Caprimulgidae)</td>
<td>Moldova*</td>
</tr>
<tr>
<td></td>
<td>Hartingiella neotropica (sp. n.)</td>
<td>Hydropsalis parvula* (Caprimulgidae)</td>
<td>Brazil*</td>
</tr>
</tbody>
</table>

* type hosts and countries originally reported; † probably contamination.

Host common and scientific names are according to Clements et al. (2013). Type specimens are deposited in the following collections: DZU-nsp-RC – Collection of Acari of Department of Zoology of Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil; ZISP – Zoological Institute of the Russian Academy of Sciences (Saint Petersburg, Russia); IPCAS – Institute of Parasitology, Biology Centre ASCR, České Budějovice, Czech Republic.

RESULTS

Survey of species found

Anaalgoidea Trouessart et Mégnin, 1884

Xolalgidae Dubinin, 1953

Ingrassiinae Gaud et Atyeo, 1981

Hartingiella Gaud, 1980

Type species: Pteralloptes megatrichtus Gaud, 1958

Hartingiella neotropica (sp. n.) Figs. 1–4

Description. Male (based on holotype, with measurements for 1 paratype in parentheses; Figs. 1, 2). Idiosoma size (length × width) 289 × 109 (290 × 112), length of hysterosoma 190 (177). Prodorsal shield: narrow longitudinal plate noticeably enlarged at level of scapular setae, 77 (70) long, 27 (26) wide (Fig. 1A). Vertical setae absent. Setae se 81 (79) in length, separated by 50 (50), situated on small sclerites, setae si separated by 36 (36). Posterior margins of scapular shields concave; paired separate fragments of prodorsal shield, situated posterior to setae se, bear flat bifurcate suprategmental processes. Hysteronotal shield: anterior margin convex, greatest length of shield from anterior end to base of setae h3 161 (160), width at widest
Fig. 1. Male of *Hartingiella neotropica* sp. n. from *Hydropsalis parvula*; holotype. A – dorsal view; B – ventral view.

Fig. 2. Male of *Hartingiella neotropica* sp. n. from *Hydropsalis parvula*. A–D – dorsal view of legs I–IV.
part posterior to level of setae d2 87 (85). Humeral shields present, dorsal part narrow. Length of terminal cleft from anterior end to tip of terminal membrane 51 (31). Supranal concavity narrow. Terminal membrane extensions on lobar apices pointed and narrow. Distance between dorsal setae: si : c2 70 (70), c2 : d2 51 (51), d2 : e2 83 (79), ps1 : ps1 23 (23), h3 : h3 35 (33), h2 : h2 44 (44). Setae c2, d2 and e2 long, filiform, approximately as long as setae cp.

Epimerites I fused into Y with concave anterior margin, sternum approximately half total length of epimerites I. Epimerites IIa absent. Coxal fields I, II, III open. Setae c3 and cp inserted ventrally on humeral shield. Anterior ends of epimerites IIIa bearing bases of setae 3b, setae 3a and 4a inserted on paragenital apodemes connecting epimerites IVa and IIIa (Fig. 1B). Genital apparatus small; genital discs situated on inner margins of paragenital apodemes. Adanal shield-bow shaped, bearing setae ps3 on its lateral extremities. Distance between ventral setae: 1a : 3b 63 (75), 3b : 3a 22 (21), 3a : 4a 45 (41), 4a : g 9 (10), g : ps3 39 (37), ps3 : ps3 16 (15). Diameter of anal suckers 10 (9), distance between centres of suckers 12 (14).

Coxal fields IV completely sclerotised. Femoragenua I, II bear rounded basal retrograde apophysis. Tibiae I with small ventral process, tibia II with well expressed acute ventral process. Tarsus I, II with small apical spine (Fig. 2A,B). Setae mG and ra of leg II, sR and d of leg III, and f of leg IV much longer than other setae of these legs (Fig. 2B–D). Length of solenidia: σ1 of genu I 46 (47), φ of tibia I 63 (59), φ of tibia II 78 (72), φ1 of tarsus I 23 (23), φ3 of tarsus I 35 (33), φ1 of tarsus II 40 (37). Ambulacrual stalk of tarsus III with ventral round extension. Ambulacrum of legs III slender than on anterior legs and absent from legs I (Fig. 2E). Legs I, II similar in shape, legs IV thicker and longer than legs III.

Female (1 paratype; Figs. 3, 4). Idiosoma size (length × width) 368 × 110. Prodorsal shield: a longitudinal plate slightly enlarged in the middle part, lightly sclerotized; total length 63, greatest width 28 (Fig. 3A). Vertical setae absent. Setae se 84 in length, separated by 58, situated on small sclerites, setae si separated by 40. Posterior margins of scapular shields concave, small pair of sclerites present posterior to scapular setae. Hysterontal shield:
anterior margin rounded; posterior margin straight; lateral margins slightly convex in medial part; greatest length of shield 161, greatest width 37; setae c2, d2, and e2 on striated tegument, c2 broken in paratype. Distances between dorsal setae: si : c2 71, c2 : d2 77, d2 : e2 102, ps1 : ps1 32, h3 : h3 48, h2 : h2 61.

Epimerites I fused into a V with a small sternum. Epigynum absent, oviporus represented by transverse bow-shaped folds (Fig. 3B). Distances between ventral setae: 1a : 3a 65, 3a : g 26, g : 4a 47, 4a : ps3 142, ps2 : ps3 16, ps2 : ps2 42, ps3 : ps3 31.

Legs I–III as in male, except for very short setae sRIII on trochanter III. Ambulacral stalks of tarsi III, IV with ventral round extension. Legs IV extending to level of setae e2 (Fig. 4D).

Type host: *Hydropsalis parvula* (Gould) (Aves: Caprimulgiformes: Caprimulgidae).

Type locality: Santa Bárbara d’Oeste, São Paulo State, Brazil (47°25’04’’S; 22°49’14’’W).

Etymology: The specific epithet refers to the Neotropical region, since this is the first species of the genus described from this region; it is treated as an adjective in the nominative singular.

Differential diagnosis. *Hartingiella neotropica* sp. n. differs from the type species of the genus by having the following features: in males, the anterior projections on epimerites III towards setae 3b and the adanal shield bearing setae ps3 are present; in both sexes, a pair of small sclerites situated posterior to setae se have flat suprategumental processes. In males of *H. megatricha*, both the projections on epimerites III and the adanal shields are absent, and in both sexes, the suprategumental flat processes are also absent.

Remarks. The genus *Hartingiella* was previously monotypic, including only the type species *H. megatricha* (Gaud, 1958), described from *Caprimulgus europaeus* Linnaeus in Morocco, and later found on *C. inornatus* Heuglin, *Scotornis fossii* (Hartlaub), and *S. climacurus* (Vieillot) from Cameroon (Gaud 1980). All known hosts are from the family Caprimulgidae.

Feather mites of this genus are elongated forms, characterised by having the following features: in both sexes, femora I and II have rounded basal retrograde apophyses; in males, the posterior legs are longer than anterior ones, ambulacra are absent from legs IV, and setae of tarsus IV are extremely long (about 170 µm, Fig. 1).

Pterolichoidea Trouessart et Mégnin, 1884

Gabuciniidae Gaud et Atyeo, 1975

Paragabucinia Gaud et Atyeo, 1975

Type species: *Gabucinia petitoti* Gaud et Mouchet, 1959

Paragabucinia brasiiliensis sp. n. (Figs. 5–7)

Description. Male (holotype, measurements for 8 paratypes in parentheses; Figs. 5, 6): Length of idiosoma from anterior end of prodorsal shield to tips of lobes 478 (463–501), greatest width 231 (226–240), length of hysterosoma 313 (297–328). Prodorsal shield entire, without lateral incisions, posterior margins with slight median concavity, length along midline 160 (149–166) (Fig. 6A). Setae vi 42 (33–43) in length, separated by 21 (15–23), se 236 (214–247) in length, separated by 83 (80–88), situated on prodorsal shield, setae si at same level of setae se, separated by 57 (51–61). Scapular shields narrow, with posterior margins oblique. Hemeral shields present. Distance between prodorsal and hysteronotal shields 64 (55–72). Setae c1, c2 on striated tegument. Hysteronotal shield: slightly concave, width at anterior margin 203 (198–219). Setae c2 and d2 filiform, setae e2, f2, and h1 thickened. Supranal concavity with median projection anteriorly and acute apices posteriorly, open posteriorly into terminal cleft. Setae h1, e2 and f2 thick, length of setae h1 20 (19–23), e2 19 (16–24), f2 22 (21–25). Setae h2 347 (312–368) long, h3 271 (235–293) long. Setae ps1 spiculiform, slightly thicker than e2, situated anterior to level of h3, 15 (15–19) in length. Distance between dorsal setae: c1 : d1 91 (81–94), d1 : d2 38 (40–54), d2 : e1 71 (69–77), el : e2 76 (56–77), h1 : h1 50 (53–61), h3 : h3 72 (77–86).

Fig. 4. Female of *Hartingiella neotropica* sp. n. from *Hydropsalis parvula*. A–D – dorsal view of legs I–IV.
Epimerites I free, posterior extremities parallel. Setae c3 thin, spiculiform; setae c3 and cp inserted ventrally on humeral shield (Fig. 6B). Ventral surface without large sclerotized areas. Pregenital apodeme (epiandrium) arch-like, small. Genital apparatus small, aedeagus 30 (24–32) in length, genital arch width 32 (25–31). Adanal shields present, represented by small ovate sclerites at level of anterior end of anal opening. Epimerites IVa present, indistinct. Setae ps2 40 (39–49) in length, setae ps3 25 (16–28) in length. Diameter of anal suckers 16 (17–19), distance between centers of discs 50 (51–61). Setae 3a and 3b situated approximately at same transverse level. Setae g at level of anterior pair of genital papillae. Distance between ventral setae: 1a : 3a 105 (95–109), 3a : g 42 (39–49), g : 4a 91 (84–102), 4a : ps3 56 (54–62), ps3 : ps3 80 (80–86).

Seta cG on genu I approximately as long as genu and tibia combined, setae cG on genu II distally bifid (Fig. 7A,B). Length of solenidia: ωl of tarsus I 21 (20–24), ω3 of tarsus I 40 (42–46), ωl of tarsus II 32 (30–36). Setae d of tarsus IV situated at midlength of this segment (Fig. 7D).

Female (based on 8 paratypes; Fig. 7): Length of idiosoma 534–589, greatest width 266–294, length of hysterosoma 349–373. Prodorsal shield shaped as in the male, length along midline 115–126, greatest width 179–192 (Fig. 8A). Scapular setae si and se situated at same transverse level, on prodorsal shield. Setae vi 40–50 in length, separated by 23–28, se 256–304 in length, separated by 95–101, si separated by 66–72. Scapular shields narrow, with posterior margins oblique. Humeral shields present. Distance between prodorsal and hysteronotal shields 90–97. Hysteronotal shield: anterior margin concave, posterior part with large unsclerotized area surrounding setae h1, anterior margin of this area irregularly indented; greatest width of shield 231–249. Distance between dorsal setae: cl : dl 90–107, dl : d2 47–59, d2 : el 106–120, e1 : e2 80–104, e2 : h1 32–39, h1 : h1 63–72, h2 : h2 66–80, h3 : h3 43–64, ps1 : ps1 26–33.

Epimerites I free, posterior extremities parallel. Epigynum thick, bow-shaped, 76–87 long, 48–61 wide, tips bearing bases of setae 3a. Setae 3b slightly posterior to level of setae 3a; setae g slightly posterior to level of tro-
Fig. 6. Male of Paragabucinia brasiliensis sp. n. from Hydropsalis albicollis. A–D – dorsal view of tibiae-tarsi of legs I–IV.

Legs I, IV as in the male. Tarsus IV extending beyond posterior end of opisthosoma. Seta sR iii subequal to total length of corresponding femur. Length of solenidia: ω1 of tarsus I 21–26, ω3 of tarsus I 48–51, ω1 of tarsus II 29–40.

Type host: Hydropsalis albicollis (Gmelin) (Aves: Caprimulgiformes: Caprimulgidae)

Type locality: Mata da Escola Agrícola de Jundiaí-UFRN (5°53’S, 35°23’W), Macaíba, Rio Grande do Norte, Brazil.

Type material: 1 holotype, 15♂ and 13♀ paratypes ex *Hydropsalis albicollis* (Caprimulgiformes: Caprimulgidae), 19 April 2012, collected by H.M. Silva.

Additional material: 23 immatures collected from the same host at UNEsP (22°24'S; 47°33'W), Rio Claro, SP State, Brazil, 2 March 2013, collected by F.A.F. Jacomassa. Holotype and paratypes at DZ/Uesp-RC (Coll. Nos. 389–413); a male and female paratypes at ZISP and IPCAS.

Etymology: The specific epithet refers to the country where the new species was found and it is treated as an adjective in the nominative singular.

Differential diagnosis. *Paragabucinia brasiliensis* sp. n. is most similar to *P. petitoti* (Gaud & Mouchet, 1959) by having an incision on the internal margins of opisthosomal lobes of males (anterior to the level of setae h1). However, it differs from the latter by the smaller size of these incisions with the acute anterior edge and by having the scapular setae se inserted on the prodorsal shield. In *P. petitoti* the lobar incisions are very large, and setae si and se are inserted on the striated tegument crossing the prodorsal shield.

Remarks. The genus *Paragabucinia* currently includes four species associated with nightjars of the genus *Caprimulgus* Linnaeus (Caprimulgidae) from Africa and Europe (Gaud and Mouchet 1959, Gaud and Atyeo 1975, Shumilo et al. 1973, Gaud 1980). A fifth species is herein described from the pauraque, *Hydropsalis albicollis* (Gmelin) (Caprimulgidae), from Brazil. This genus is characterised by having solenidion σ present on genua I and II, two setae vi, setae c2 filiform. Males have well developed opisthosomal lobes and the epigynum is long and encompasses setae 3a in females. The main discriminant characters of all known genera of the family Gabucinidae were provided by Mironov et al. (2007).
A taxonomic note should be made concerning the names Paragabucinia and P. cardiura. Shumilo et al. (1973) reported the latter species on *Caprimulgus europaeus* Linnaeus in Moldavia, referring the authority of both genus and species to Gaud, and the date of their own paper – 1973. However, the genus Paragabucinia was described two years later by Gaud and Atyeo (1975), and the species *P. cardiura* was actually described by Gaud (1980) seven years later, from a different host species, *Caprimulgus rufigena* Smith. Shumilo et al. (1973) apparently used manuscript names provided by J. Gaud; therefore, the taxa Paragabucinia and *P. cardiura* as appeared in their publication are nomina nuda, since they were not accompanied by a description. The genus and species names were validated in 1975 and 1980, respectively (Gaud and Atyeo 1975, Gaud 1980).

Key to males of the genus Paragabucinia Gaud et Atyeo, 1975

1 Seta e2 approximately as long as tarsus IV 2
 – Seta e2 about 1/5 of the length of tarsus IV 3
2 Distance between setae g–4a equal to or longer than distance g–h1 .. *P. cardiura* Gaud, 1980
 – Distance between setae g–4a significantly less than distance g–h1 .. *P. ignorata* Gaud, 1980
3 Internal margins of opisthosomal lobes with a semicircular indentation anterior to level of setae h1 4
 – Semicircular indentation on opisthosomal lobes absent. .. *P. longicaudata* Gaud, 1980
4 Prodorsal shield with lateral incisions at level of setae se and si, these setae inserted off prodorsal shield (in both sexes) *P. petitoti* (Gaud et Mouchet, 1959).
 – Lateral incisions on prodorsal shield absent, setae se and si inserted on prodorsal shield *P. brasiliensis* sp. n.

Key to females of the genus Paragabucinia Gaud et Atyeo, 1975

1 Area of hysteronotal shield between setae el and hl with a pair of distinct incisions 2.
 – Paired incisions in this area absent 2.
 .. *P. brasiliensis* sp. n.
2 Paired incisions on hysteronotal shield not extending to the level of setae e1 .. 3
– Paired incisions on hysteronotal shield extending to the level of setae e1 .. 4

3 Anterior margins of paired incisions anterior to setae h1
rounded .. P. cardiura Gaud, 1980
– Anterior margins of paired incisions anterior to setae h1
angular P. petioti (Gaud et Mouchet, 1959)

4 Setae h1 anterior to or at the same level of setae e2
– Setae h1 posterior to level of setae e2 P. longicaudata Gaud, 1980

References

Ateyo W.T., Gaud J. 1966: The chaetotaxy of sarcoptiform feather

Ateyo W.T., Peterson P.C. 1977: Trouessartiidae, new status,

Bonnet A. 1924: Révision des genres Megninia, Mesalgæ et
genres voisins de la sous-famille des Sarcoptides plumicoles

Clements J.F., Schulenberg T.S., Iliff M.J., Sullivan B.L.,
Wood C.L., Roberson D. 2013: The eBird/Clements checklist
of birds of the world. World Wide Web electronic publication,

Dabert J., Ehrnsberger R. 1992: Neue Arten bei der Federmil-
befamilie Ascouracaridae Gaud & Ateyo, 1976. Osnabrücker

Enout A.M.J., Lobato D.N.C., Diniz F.C., Antonini Y. 2012:
Chewing lice (Insecta, Phthiraptera) and feather mites (Acari,
Astigmata) associated with birds of the Cerrado in Central Bra-

Gaud J. 1958: Acariens plumicoles (Analgesoidea) parasites des

Gaud J., Mouchet J. 1961: Deux genres nouveaux de sarcopti-
formes plumicoles: un nouveau critère dans la systématique des
Analgesoidea. Acarologia 3: 591–598.

Del Hoyo J., Elliot A., Sargatal J. (Eds.) 1999: Handbook of
Press, Lubbock, Texas, 807 pp.

Livesey B.C., Zusi R.L. 2007: Higher-order phylogeny of mod-
ern birds (Theropoda, Aves: Neornithes) based on comparative

Mironov S.V. 2011: Feather mites of the genus Pandalura Hull
(Astigmata: Psoroptoididae) from owls and Caprimulgiformes.

Mironov S.V., Fain A. 2003: New feather mites of the family As-
couracaridae (Astigmata: Pterolichoidea) from some parrots

Mironov S.V., Proctor H.C., Barreto M., Zimmerman G. 2007:
New genera and species of feather mites of the family Gabu-
ciniidae (Astigmata: Pterolichoidea) from New World raptors

with French summary.)

Shumilo R.P., Černý V.V., Tikhon E.I. 1973: [Feather mites
(Acariformes: Analgoidea) of wild terrestrial birds in Moldavia
and Chernovitz Oblast of the Ukraine]. Parazity Zhiivotnykh
i Rastenii, Akademiia nauk Moldavskei SSR 9: 192–208. (In Russian.)