Revision of the genus *Afrogyrodactylus* Paperna, 1968 (Monogenea: Gyrodactylidae) with description of two new species from geographically distant localities

Iva Přikrylová1,2 and Wilmien J. Luus-Powell2

1Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic; 2Department of Biodiversity, School of Molecular and Life Sciences, University of Limpopo, Sovenga, South Africa

Abstract: This study revises the originally monotypic genus *Afrogyrodactylus* Paperna, 1968 (Monogenea), the species of which infect alestid fish (Characiformes) in Africa, and includes new records of these parasites from three geographically distant countries, Senegal, Sudan and South Africa. Morphology of opisthaptoral hooks and bars and nuclear ribosomal DNA data revealed three *Afrogyrodactylus* species. *Afrogyrodactylus girgjafae* sp. n. is described from the fins of the Sudanese nurse tetra, *Brycinus nurse* (Rüppell), and *A. kingi* sp. n. presents from the gill arches of the South African sharptooth tetra, *Micralestes acutidens* (Peters), whereas a previously undescribed *Afrogyrodactylus* sp. occurred on the fins of *B. nurse* from Senegal. All three species differ conspicuously from the only known species of this genus, *A. characinis* Paperna, 1968, by the dimensions of their haptor hard parts. Detailed morphological and molecular descriptions and comparisons are presented.

Keywords: taxonomy, morphology, new species, ITS rDNA, Alestidae, South Africa, Sudan, Senegal, Etiopian region

Flatworms of the family Gyrodactylidae Cobbold, 1864 (Platyhelminthes: Monogenea) are ectoparasites with a worldwide distribution in both marine and freshwater environments. To date, species from five genera have been described from African freshwater fish. These are the cosmopolitan *Gyrodactylus* von Nordmann, 1832, and *Afrogyrodactylus* Paperna, 1968, *Diplogyrodactylus* Přikrylová, Matějusová, Musilová, Gelnar et Harris, 2009, *Macrogyrodactylus* Malmberg, 1957 and *Mormyrogyrodactylus* Luus-Powell, Mashego et Khalil, 2003, which are endemic to the continent. Another genus, *Gyrdictyurus* Verckammen-Grandjean, 1960, has been reported from a non-fish host, the African clawed toad *Xenopus laevis* Daudin (see Verckammen-Grandjean, 1960).

Tetras of the family Alestidae Cockerell are a group of characiform fish exclusive to Africa that comprises of 18 families and 110 species (Nelson 2006). Alestid fish in Africa are parasitised by a number of monogeneans, including both monopisthocotyleans and polyplisthocotyleans. Amongst the monopisthocotyleans, only two gyrodactylids (*Afrogyrodactylus characinis* Paperna, 1968 and *Gyrodactylus microalae* Paperna, 1968) have been found on these fishes, which are also infected by species of numerous dactylogyrid genera including *Anulotrema* von Nordmann, 1832, *Characidotrema* Paperna et Thurston, 1969 and *Afrocleidodiscus* Paperna, 1969 (see Thurston 1970, Ergens 1973, Paperna 1973, Molnar and Mossalam 1985, Birgi 1988). *Diplozoon gahense* Thomas, 1957 is the only polyplisthocotylean recorded from these fish and was found on *Alestes macrolepidotus* Valenciennes and *Alestes baremoze* (Joannis) (see Thomas 1957, Paperna 1969, respectively).

The first and only species of the genus *Afrogyrodactylus* was originally described from *Micralestes* sp. sampled in Lake Volta (Paperna 1968), but was later synonymised with *Gyrodactylus* (see Paperna 1979). However, Bakke et al. (2007) suggested that *Afrogyrodactylus* is a valid genus, because of the characteristic morphological differences in the features of the hamuli and the male copulatory organ (MCO) from species of *Gyrodactylus*. The first molecular data on *Afrogyrodactylus* and its phylogenetic position among Gyrodactylidae confirmed the validity of the genus (Přikrylová et al. 2013).

The present study provides a revision of *Afrogyrodactylus* and describes two new species of the genus from two alestid hosts from geographically distant localities in Africa.

MATERIALS AND METHODS

Gyrodactylid monogeneans were collected from the fins and gills of two alestid species, the nurse tetra, *Brycinus nurse* (Rüppell) and the sharptooth tetra, *Micralestes acutidens* (Peters) during parasitological investigations freshwater fish in three African countries between November 2004 and March
Fig. 1. Scheme of measurements of hamuli of *Afrogyrodactylus* spp. Abbreviations: a – total length; b – point length; c – shaft length; d – inner root length; e – outer root length.

2012. Fish were collected using seine nets, identified according to Skelton (2001) and kept in containers with aerated river water until examination. Details on the localities and sampling dates are provided in Table 1. Parasites were removed from the hosts’ fins and gills. Their haptors were excised, fixed with ammonium picrate-glycerine (Malmberg 1970) and mounted on slides for subsequent morphological analysis. The anterior ends of the parasite bodies were stored in 99% ethanol. Specimens collected in the Sudan were directly fixed in 99% ethanol and slides were prepared in the laboratory following the procedure published by Rokicka et al. (2007).

Morphological analysis of the collected parasite specimens was performed using a phase-contrast microscope (Olympus BX51). Hard parts and body anatomy were drawn with the aid of a drawing attachment. Measurements of hamuli were taken for each specimen as shown in Fig. 1. Parameters of such as measurements of bars and size of the body and marginal hook were taken based on Christison et al. (2005). All measurements are in micrometres (µm) and are presented as range with mean and number of specimens studied in parentheses.

Table 1. Summary on localities, collection period and number of studied (N)/infected (n) host fish from which *Afrogyrodactylus* spp. for the present study were collected.

<table>
<thead>
<tr>
<th>Country</th>
<th>Locality</th>
<th>Host species</th>
<th>N/n</th>
<th>TL</th>
<th>Date of collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudan</td>
<td>Sennar, Blue Nile (13°32.81’N; 33°38.17’E)</td>
<td>Brycinus nurse (Rüppell)</td>
<td>17/2</td>
<td>107–127</td>
<td>January 2008, 2009</td>
</tr>
</tbody>
</table>

TL – total length of collected fish in millimetres.

RESULTS

Afrogyrodactylus Paperna, 1968

Amended generic diagnosis. Body fusiform, compris ing prohaptor and opisthaptor. Prohaptor bilobed, bearing spike sensilla; anterior adhesive gland cells lateral to pharynx. Eye spots absent. Pharynx spherical, consisting of two bulbs; pharyngeal processes not observed. Oesophagus short; bifurcated, simple blind intestinal cru ra which extend beyond egg cell forming region (ECFR). Male copulatory organ (MCO) situated in muscular pouch anterior to intestinal cruca, without spines and spinelets absent, exiting through a duct opening to body surface via a pore. Vesicula seminalis posterior to MCO, communicating with it via short duct; sperms visible in vesicula seminalis of several specimens. Female reproduct ive system dominated by thick-walled tubular uterus, usually containing F1 embryos. F2 embryos not observed. Opisthaptor clearly demarcated from trunk, with a pair of hamuli, simple ventral and dorsal bar, and 16 marginal hooks positioned along whole margin of opisthaptor. All marginal hooks bear filament loop. Hamuli with well-developed outer root, possessing small constriction where its point merges into its shaft.

Afrogyrodactylus girgifae sp. n.

Figs. 3, 4, 10–12, 17, Table 2

Syn. *Afrogyrodactylus* sp. of Přikrylová et al. (2013) The newly obtained sequences were searched in the NCBI nucleotide database using BLAST (Zhang et al. 2000) to establish possible identity with other species.
Table 2. Comparison of the measurements (in μm, range with mean in parentheses) of the haptoral hard parts of *Afrogyrodactylus* spp.

<table>
<thead>
<tr>
<th>Measurements</th>
<th>A. characinis</th>
<th>A. girgifae sp. n.</th>
<th>A. kingi sp. n.</th>
<th>Afrogyrodactylus sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 7) Paperna (1968)</td>
<td>(n = 16) Present study</td>
<td>(n = 13) Present study</td>
<td>(n = 2) Present study</td>
</tr>
<tr>
<td>Hamulus total length</td>
<td>55–70</td>
<td>33.3–36.2 (34.8)</td>
<td>27.2–31.3 (29.1)</td>
<td>28.1–31.6</td>
</tr>
<tr>
<td>Hamulus shaft length</td>
<td>-</td>
<td>26.8–31.3 (28.7)</td>
<td>23.0–26.9 (24.0)</td>
<td>25.9–26.1</td>
</tr>
<tr>
<td>Hamulus outer root length</td>
<td>5–10</td>
<td>4.3–6.6 (5.4)</td>
<td>5.5–5.9 (5.0)</td>
<td>4.2–4.4</td>
</tr>
<tr>
<td>Hamulus inner root length</td>
<td>8–11</td>
<td>10.2–13.6 (12.3)</td>
<td>7.4–10.4 (8.8)</td>
<td>9.5–10.2</td>
</tr>
<tr>
<td>Ventral bar width</td>
<td>-</td>
<td>10.2–15.0 (12.8)</td>
<td>10.0–11.5 (10.8)</td>
<td>11.9</td>
</tr>
<tr>
<td>Ventral bar length</td>
<td>10–12</td>
<td>4.5–6.0 (5.3)</td>
<td>4.3–6.2 (5.3)</td>
<td>4.2</td>
</tr>
<tr>
<td>Dorsal bar width</td>
<td>10–12</td>
<td>10.4–10.8 (10.6)</td>
<td>8.4–9.9 (9.1)</td>
<td>-</td>
</tr>
<tr>
<td>Dorsal bar length</td>
<td>-</td>
<td>1.0–1.3 (1.1)</td>
<td>1.0–1.2 (1.1)</td>
<td>-</td>
</tr>
<tr>
<td>Marginal hook total length</td>
<td>20–30</td>
<td>19.0–21.9 (20.9)</td>
<td>18.4–20.0 (19.1)</td>
<td>18.7</td>
</tr>
<tr>
<td>Marginal hook sickle length</td>
<td>5–7</td>
<td>3.2–3.7 (3.5)</td>
<td>3.2–3.6 (3.4)</td>
<td>3.1</td>
</tr>
<tr>
<td>Marginal hook handle length</td>
<td>-</td>
<td>15.4–18.3 (17.4)</td>
<td>15.1–16.4 (15.4)</td>
<td>15.7</td>
</tr>
<tr>
<td>Marginal hook distal width</td>
<td>-</td>
<td>2.4–2.9 (2.6)</td>
<td>2.2–2.9 (2.5)</td>
<td>2.3</td>
</tr>
<tr>
<td>Marginal hook proximal width</td>
<td>-</td>
<td>2.8–3.7 (3.3)</td>
<td>2.9–3.4 (3.1)</td>
<td>3.3</td>
</tr>
<tr>
<td>Marginal hook aperture distance</td>
<td>-</td>
<td>2.7–3.2 (2.9)</td>
<td>2.6–3.0 (2.8)</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Number of measured specimens: a – 12; b – 9; c – 6; d – 2.

maximum half of length of inner roots (Fig. 3). Robust shaft of marginal hook sickle rises forward from base and curves gradually (Figs. 4, 11, 12). Point of marginal hook sickle ends above edge of toe. Foot with heel of rounded edge. Pronounced sickle toe, leading edge partly flattened on upper surface, then slanting down to toe.

Type host: Nurse tetra, *Brycinus nurse* (Rüppell) (Characiformes: Alestidae).

Site of infection: Fins.

Type locality: Sennar, Blue Nile (13°32.81’N; 33°38.17’E), Sudan.

Type specimens: Holotype and two paratypes deposited in the Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic in České Budějovice, Czech Republic (IPCAS; Coll. No. M-554), three paratype specimens, the Natural History Museum London, UK (NHMUK 2014.7.16.4–6).

Etymology: The specific name is derived from ‘girgifa’, common name for *B. nurse* in Nubian, old Sudanese language.

Sequence data: For molecular characterisation, a 713 bp fragment covering ITS1 (312 bp), 5.8S (157 bp) and ITS2 (244 bp) was successfully sequenced from three specimens and submitted to GenBank under accession number HF548671. The entire sequence was identical for the three specimens.

Remarks. Overall dimensions of hamuli and sickle of *A. girgifae* sp. n. differ significantly from those of *A. characinis* provided in the original description (Paperna 1968; see Table 2). Moreover, dimensions of *A. girgifae* sp. n. differ from those of *A. kingi* sp. n. and *Afrogyrodactylus* sp. found in the present study (Table 2). There is only one overlap in the dimension of hamulus point length of *A. girgifae* and *Afrogyrodactylus* sp. (13.1–15.1 μm vs 13.2–13.6 μm). Both species differ substantially in the shape of marginal hook sickles. The shaft of marginal hook sickles of *A. girgifae* starts slanted forward, is regularly curved and more slender than that of *Afrogyrodactylus* sp., which has a more sturdy sickle proper rising perpendicular to the foot.

Afrogyrodactylus kingi sp. n.

Figs. 5, 6, 13, 14, 18, Table 2,

Description (based on 11 coverslip-flattened specimens and two excised opisthaptors of sequenced individuals): Total body length 497–784 (649, n = 11); maximum body width at level of uterus 62–135 (110, n = 11). Pharyngeal bulb 32–48 (40, n = 11) long, 30–44 (38, n = 11) wide across anterior bulb. Excretory bladders present. MCO elongate, observed for two specimens, 17.7–22.2 long and 5.1–5.6 wide at base. Ventral bar simple, membrane and lateral processes absent. Hamuli connected with a simple dorsal bar. Measurements of opisthaptorial hard parts given in Table 2. Slender hamuli, broadening at junction of inner and outer roots. Conspicuous outer roots more than half length of inner roots (Fig. 5). Shaft of marginal hook sickle rises mildly forward, turns sharply downward towards toe (Figs. 6, 13, 14). Point of marginal hook sickle ends above edge of toe. Sickle proper with a broad foot. Well-developed heel with rounded edge lies posterior to bottom edge of toe. Upper edge of short toe extends straight forward and then slants to tip.

Type host: Sharptooth tetra, *Micralestes acuditens* (Peters) (Characiformes: Alestidae).

Site of infection: Gills.

Type locality: Nwanedi Resort, Nwanedzi River (22°37.99’S; 30°24.07’E), South Africa.

Type specimens: Holotype and two paratypes (IPCAS M-553), three paratypes (NHMUK 2014.7.16.1–3).
Figs. 2, 7–9. *Afrogyrodactylus* sp. from *Brycinus nurse*, Senegal (voucher specimens M-555). **Figs. 3, 4.** *Afrogyrodactylus gargarifae* sp. n. from *Brycinus nurse*, Sudan (holotype M-554). **Figs. 5, 6.** *Afrogyrodactylus kingi* sp. n. from *Micratestes acuditens*, South Africa (holotype M-553). **Fig. 2.** Composite drawing. **Figs. 3, 5, 8.** Hamuli. **Figs. 4, 6, 9.** Marginal hook. **Fig. 7.** Male copulatory organ.

Etymology: The specific name honours Piet H. King from the Department of Biology, Faculty of Health Sciences, University of Limpopo, recognising his particular contribution during the field work.

Sequence data: For molecular characterisation, a 639 bp fragment covering ITS1 (270 bp), 5.8S (157 bp) and ITS2 (212 bp) was successfully sequenced from two specimens and submitted to GenBank under accession number HG970104. The entire sequence was identical for both specimens.

Remarks: Based on the dimensions of hamuli, *A. kingi* sp. n. resembles *Afrogyrodactylus* sp. found in the present study (see Table 2) but these two species differ in hamulus point length (9.9–12.4 vs 13.2–13.6 μm) and hamulus
outer root length (5.5–5.9 vs 4.2–4.4 μm). Differences in the shape of marginal hook sickles can be also observed (Figs. 6, 9, 13, 14, 15, 16). The foot of the sickle of *A. kingi* is slanted with a short toe, the proper sickle rising slightly forward with rouding in the terminal part. In contrast, the foot has a bigger body and lower line in the horizontal plane, in *Afrogyrodactylus* sp. and sturdy proper sickle turns immediately after rising from the foot.

A BlastN (Zhang 2000) search in GenBank on 11 March 2013 using the entire sequence revealed only one close hit, i.e. *Afrogyrodactylus* sp. (Genbank Acc. No. HF548671) deposited by Přikrylová et al. (2013), the species that is described as *A. girgifae* sp. n. in the present study. Altogether, there are 76 differences between the ITS sequences of *A. kingi* sp. n. and *A. girgifae* sp. n. These substitutions can be attributed to 40 in ITS 1 (21 transitions and 19 transversions), five substitutions in 5.8S (3 transitions and 2 transversions) and 31 substitutions in ITS2 (17 transitions and 14 transversions). In addition, seven indels were found, five and two in ITS1 and ITS2, respectively. The large number of differences (76 out of 639) observed in the ITS regions suggests that these are different species.

Afrogyrodactylus sp. Figs. 8, 9, 15, 16, 19, Table 2

Description (based on two coverslip-flattened specimens): Total body length 500–505; maximum body width
at level of uterus 90–107. Pharyngeal bulb 44–45 long, 36–43 wide across anterior bulb. Excretory bladders present. MCO elongate, 15–17 long and 5–6 wide at base. Ventral bar simple, membrane and lateral processes absent. Hamuli connected with simple dorsal bar. Measurements of opisthaptoral hard parts given in Table 2. Hamuli of more sturdy appearance, well developed outer roots at maximum half length of inner roots. Junction between inner and outer roots moderately open, hamuli noticeably broaden in this part. Hamuli with small constriction where point merges into its shaft (Fig. 8). Marginal hook sickle robust, short sturdy shaft of marginal hook sickle rises upright, immediately turns round into short point nor crossing beyond edge of toe (Figs. 9, 15, 16). Rounded heel extends slightly backward. Triangular toe smoothly merges into shaft of marginal hook sickle.

Host: Nurse tetra, Brycinus nurse (Rüppell) (Characiformes: Alestidae).

Site of infection: Fins.

Locality: Post Simenti, Gambia River (13°01.39N; 13°17.55W), Senegal.

Specimens deposited: Two specimens (IPCAS M-555).

Remarks. Due to the limited number of studied specimens, the formal description of this unknown species is not presented here. The size of the haptoral hard parts is considerably smaller than those of *A. characinis*, but similar in size to that of *A. kingi* sp. n. (Table 2). However, the shape of the marginal hook sickle and hamuli differ between *Afrogyrodactylus* sp. and *A. kingi* sp. n. Moreover *Afrogyrodactylus* sp. has more robust hamuli than *A. girgifae* sp. n. and *A. kingi* sp. n.

DISCUSSION

The genus *Afrogyrodactylus* differs from other gyroactylid genera in a number of characteristics. These include the hamuli with well-developed outer root and the MCO, which differs from the bulbous *Gyrodactylus*-type by having an elongated muscular pouch with no spines or spinelets. Within the Gyrodactylidae, based on the morphology of opisthaptoral hard parts (the hamuli with a well-formed outer root), *Afrogyrodactylus* is most similar to the genera *Archigyrodactylus* Mizelle et Kritsky, 1967, *Gyrdicotylus*, *Gyrodactyloides* Bychowsky, 1947 and *Laminiscus* Palsson et Beverly Burton, 1983. *Archigyrodactylus*, *Laminiscus* and *Gyrodactyloides* are marine parasites with additional plates on their opisthaptors or with ventral bar membrane extended into wings that spread back around the opisthaptor to the hamulus roots.

In contrast, *Gyrdicotylus* specimens have the opisthaptor modified into two suckers and parasite amphibian hosts. Until the bulbous MCO with spines varying in numbers and size as recorded for *Gyrodactylus* spp. (Malmberg 1970) and some other gyroactylid genera (*Afrogyrodactylus* has a partially elongated muscular MCO inside which the internal duct can be observed and which extends and opens at the body surface via a pore (Figs. 17, 19). When fully developed, the MCO can widely open, as observed for one specimen of *A. kingi* (Fig. 18). Nevertheless, the muscular character of the MCO suggests that the twisting and contracting of the pouch is a possible means by which the sperm can reach the parasite’s body surface. A similar muscular type of MCO has been previously described for *Diplogyrodactylus* (see Přikrylová et al. 2009), but its function has not been discussed.

Among viviparous gyroactylids, the internal duct extending through the MCO is probably not limited to *Afrogyrodactylus*, as similar structures of this nature have been observed for another not described yet gyroactylid genus, but in this case the parasite has outer spiny reinforcement of the MCO (personal observation). Some egg-laying genera, such as *Ooeogyrodactylus* Harris, 1983, have an entirely muscular MCO or the duct may be unarmed or armed with spines or rods as in *Phanerotherecioides* Kritsky, Vianna et Boeger, 2007. Paperna (1968) described the MCO for *A. characinis* as being a muscular pouch with an inner wall inserted with minute rods or spines. Our observations of specimens of three other species of *Afrogyrodactylus* under polarised light did not confirm any such sclerotised elements of the pouch.

The body of *Afrogyrodactylus* spp. has a long peduncle but the internal structure in this part of the body is difficult to observe. Generally, few details (the egg cell forming region or the testis) have been observed, although sperm were observed in the vesicula seminalis. Unfortunately, the original description of *A. characinis* does not provide detailed information on the internal anatomy and the drawing of the parasite body provided by Paperna (1968) shows few internal structures, which makes it difficult to confirm whether this species is progenetic or not (Harris 1983, Bakke et al. 2007).

The shape of marginal hook sickles is a crucial characteristic feature used for species identification among the viviparous gyroactylid genera (Malmberg 1970, Shinn et al. 2001, Paladini et al. 2010, Přikrylová et al. 2012). From our observations, it seems that the morphology of the marginal hook sickles is a very important feature for the identification of *Afrogyrodactylus* species as well. Drawings and photomicrographs from detailed morphological analysis show the differences in the shape of marginal hook sickles of studied species (see Figs. 4, 7, 9, 11–16). Because of the similarity in hamulus dimensions in all the species examined, the shape of marginal hook sickles is crucial for species differentiation in *Afrogyrodactylus*. No comparison with the type material of *A. characinis* was possible because no information could be found pertaining to the original description or type material, possibly because of the destruction of many of
Paperna’s type specimens in a fire (A.P. Shinn, Fish Vet Group Asia Limited, Bangkok, Thailand – pers. comm.). Measurements of three identified species differ distinctly from those reported by Paperna (1968) for A. characini (Table 2), which indicates that the present study has yielded three distinguishable species of Afroygodactylus.

Results of the phylogenetic analysis of African gyrodactylids (Přikrylová et al. 2013), make it clear that Afroygodactylus is a distinct genus, unrelated to Gyrodactylus. Although Afroygodactylus clustered with Gyrodactylus sp. 3 of Přikrylová et al. (2013), but this was due to the fact that Gyrodactylus sp. 3 was atypical and may represent a distinct and as yet undescribed genus. This assumption is supported by a description of the morphological similarities and differences between Afroygodactylus and that of an undescribed genus, and it is also highly supported by observed genetic distances between them in both ITS and 18S rDNA regions, 31.2% and 6.4%, respectively (Přikrylová et al. 2013).

Five different sites (3.2%) within the conservative 5.8S molecule of rDNA between two Afroygodactylus species show that newly identified species are not very closely related. Among the genus Gyrodactylus, level of variation up to 6.4% within the 5.8S rDNA region was noted (Ziemia et al. 2002), which is more than intragenic differences reported for tropical Cnidaria (up to 2.6%) and even higher than the variation found between nematode families and superfamilies (up to 5.2%) (Chen et al. 1996, Chilton et al. 1997, Zhu et al. 1998).

However, 5.8S can be very conserved within the natural taxonomic groups in Gyrodactylus as in the G. wageneri-group or closely related African species (Ziemia and Lumme 2003, Garcia-Vásquez et al. 2011, Přikrylová et al. 2012). Such level of variation is remarkable and is probably a consequence of extreme morphological conservatism due to pedogenetic polyembryony in the group. Together, the role of the geographical isolation and the host diversification can not be overlooked. Arroyave and Stiassny (2011) estimated divergence between lineages of Brycinus Valenciennes and those including Micralesles Boulenger around 45 mya, providing a sufficiently long period to contribute for such changes to occur.

We believe that Afroygodactylus might be a more diverse genus than it is currently known today. The small size of both the hosts and parasites might be the reason why these parasites are often overlooked.

Acknowledgements. We are grateful to Radim Blažek for collection of material in the Sudan. I.P. received financial support of the Czech Sciences Foundation (projects Nos. P505/11/P470 and P505/12/G112). Department of Botany and Zoology, Faculty of Science, Masaryk University is gratefully acknowledged for hosting the morphological and molecular processing of the analysed material. The research done in South Africa was funded by the University of Limpopo and the National Research Foundation (Thuthuka Programme; TTK2006062100013). Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in this regard. Piet King and Hendrik Hattingh are thanked for their valuable assistance with fieldwork.

REFERENCES

Kritsky D.C., Thatcher V.E. 1977: Phanerothecium gen. nov. and Fundulotrema gen. nov. two new genera of viviparous Monogenea (Gyrodactylidea) with a description of P. caballeroi sp. nov. and a key to the subfamilies and genera of the family. Excera Parasitologica in Memoria del doctor Eduardo Caballero y Caballero. Instituto de Biología, Universidad Nacional Antónom de México, México, D.F. Publicaciones Especiales 4: 53–60.

