A new genus and species of proteocephalidean tapeworm (Cestoda), first parasite found in the driftwood catfish *Tocantinsia piresi* (Siluriformes: Auchenipteridae) from Brazil

Philippe Vieira Alves1, Alain de Chambrier2, Tomáš Scholz3 and José Luís Luque4

1 Programa de Pós-Graduação em Biologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil; 2 Department of Invertebrates, Natural History Museum, Geneva, Switzerland; 3 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; 4 Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil

Abstract: *Frezella* gen. n. is proposed to accommodate *Frezella vaucheri* sp. n. from poorly known auchenipterid fish, *Tocantinsia piresi* (Miranda Ribeiro), from the Xingú River, one of the principal tributaries of the lower Amazon River in Brazil. The new genus belongs to the Proteocephalinae because of the medullary position of the testes, ovary (yet some follicles penetrate to the cortex on the dorsal side), vitelline follicles and uterus. It differs from other proteocephaline genera in the morphology of the scolex, which includes a metascolex composed of two distinct zones: anterior, strongly wrinkled part posterior to the suckers, and posterior, sparsely folded zone. *Frezella* can also be differentiated by having the internal longitudinal musculature hypertrophied laterally on both sides, the presence of some ovarian follicles in the cortex on the dorsal side and the presence of additional pair of tiny, thin-walled osmoregulatory canals situated slightly dorsomedian to ventral canals. *Frezella vaucheri* is the first helminth parasite reported from *T. piresi*, which occurs in the lower reaches of the Amazon and Tocantins River basins in Brazil.

Keywords: taxonomy, morphology, Proteocephalidea, metascolex, Amazon River basin, Xingú River, Neotropical Region

The Neotropical region hosts the highest diversity of freshwater fishes on the Earth (Reis 2013). Siluriforms (catfishes) represent one of the dominant groups of the fish fauna of this region and some of them serve as definitive hosts of proteocephalidean tapeworms (Eucestoda: Proteocephalidea). The highest diversity of tapeworm species was recognised in large pimelodids such as *Phractocephalus* Agassiz, *Pseudoplatystoma* Bleeker and *Zungaro* Bleeker in the Amazon and Paraná River basins. Some species of these genera may host as many as 7–9 species of proteocephalideans (de Chambrier and Vaucher 1999, Rego et al. 1999, de Chambrier et al. 2006, 2014, Arredondo et al. 2013, 2014). However, proteocephalidean cestodes also parasitise other groups of siluriforms, such as auchenipterids, in particular species of *Ageneiosus* Lacépède (see de Chambrier and Vaucher 1999, Gil de Pertierra 2009).

During studies on the parasitic helminths of freshwater fishes from the Xingú River (southern tributary of the Amazon River) in Brazil, proteocephalidean tapeworms were found in the intestine of the auchenipterid catfish *Tocantinsia piresi* (Miranda Ribeiro), locally known as ‘pocomão’. This fish was described as *Glanidium piresi* by Miranda Ribeiro (1920) from the Sã0 Manuel River, which forms, together with the Juruena River, the Tapajós River (one of the principal southern tributaries of the Amazon River). Much later, Mees (1974) proposed a new genus, *Tocantinsia* Mees, to accommodate his new species *T. depressa* Mees from the Tocantins River, i.e. another river basin independent to that of the Amazon River. However, the same author (Mees 1984) synonymised *Tocantinsia depressa* with *Glanidium piresi*, which actually does not belong to *Glanidium* Lütken. Therefore, a new combination, *T. piresi*, was proposed by Mees (1984) and it is currently accepted as valid name (Froese and Pauly 2014). This fish occurs in both the Amazon and Tocantins River basins (Barros 2012), but data on its parasites including proteocephalidean cestodes are absent.

Morphological evaluation of the cestodes found in *T. piresi* from the Xingú River has revealed that they represent a new species, which is described herein. In addition, the new species cannot be allocated to any of the known genera of proteocephalidean cestodes. Therefore, a new genus is proposed to accommodate this new species.
MATERIALS AND METHODS

Fish collected by local fishermen were kept alive in a box filled with fresh water prior to being transported to the laboratory and then immediately dissected. Cestodes found were placed in saline. Out of the nine specimens found, five were fixed with hot 4% neutral formaldehyde solution and subsequently stored in 70% ethanol (see de Chambrier et al. 2014). A small piece of the posterior end of the four remaining specimens was cut off and placed in molecular-grade 96–99% ethanol for sequencing of the 28S rRNA gene (for methodology, see Ash et al. 2012). For morphology, specimens were stained with Mayer’s hydrochloric carmine solution, dehydrated in an ethanol series, cleared with eugenol (clove oil) and mounted in Canada balsam. Pieces of the strobila were embedded in paraffin wax, cross sectioned at 12–15 μm, stained with Weigert’s haematoxylin and counterstained with 1% eosin B following protocol outlined by de Chambrier (2001).

For scanning electron microscopical (SEM) observations, scoleces of the new species were prepared by the method described by Oro et al. (2010) and observed with a Zeiss 940a electron microscope at the Natural History Museum, Geneva and JEOL JSM 6700F scanning electron microscope at the Institute of Parasitology, BC CAS, České Budějovice, Czech Republic. Microtrich terminology follows Chervy (2009). All measurements are given in micrometres unless otherwise indicated. Abbreviations used in descriptions are as follows: x – mean; n – number of measurements. Acronyms of collections: CHIOC – Helminthological Collection of the Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; IPCAS – Institute of Parasitology, České Budějovice, Czech Republic; MHNG-PLAT – Natural History Museum, Geneva, Switzerland.

RESULTS

Frezella gen. n.

ZooBank number for genus: urn:lsid:zoobank.org:act:1396D02F-CD2A-4A24-9BC8-E01A37E33AA4

Description: Proteocephalidea, Proteocephalidae, Proteocephalinae. Medium-sized, robust worms. Strobila acraspedote, with proglottids variable in shape and size. Apex of scolex with muscular apical organ and metascolex composed of 2 distinct zones; anterior part strongly wrinkled, posterior part with few longitudinal wrinkles. Suckers uninucleate. Internal longitudinal musculature well developed, with bundles of muscle fibres forming conspicuous concentrations on lateral sides of proglottids. A pair of tiny, thin-walled osmoregulatory canals situated slightly dorsomedian to ventral canals (Fig. 12).

Differential diagnosis. The new genus belongs to the Proteocephalinae because of the medullary position of testes, ovary (with some lobes penetrating to the cortex on the dorsal side), vitelline follicles and uterus (Schmidt 1986, Rego 1994). To date, the subfamily includes 16 genera parasitising vertebrates of several groups (genera from Neotropical catfishes indicated by an asterisk), namely *Barsonella* de Chambrier, Scholz, Beletew et Mariaux, 2009; *Bravela* Rego, 1984; *Cangatiella* Pavanelli et Machado dos Santos, 1991; *Euzetiella* de Chambrier, Rego et Vaucher, 1999; *Glantaeida* de Chambrier, Zehnder, Vaucher et Mariaux, 2004; *Margariaella* Arredondo et Gil de Perttierra, 2012; *Proteocephalus* Weinland, 1858; *Pseudocrepidobothrium* Rego et Ivanov, 2001; and *Scholzia* de Chambrier, Rego et Gil de Perttierra, 2005, all parasitic in fish; *Cairaella* Coquille et de Chambrier, 2008; *Crepidotobothrium* Monticelli, 1900; *Deblocktaenia* Odening, 1963; *Macrobothrioidea* Freze, 1965; *Ophiotenia* La Rue, 1911; and *Tejidotaenia* Freze, 1965, all parasitising amphibians and reptiles; and *Thaumasiocolex Cândea-Guzmán*, de Chambrier et Scholz, 2001, a parasite of the black-eared opossum *Didelphis marsupialis* Linnaeus (Mammalia) (Rego 1994, Cândea-Guzmán et al. 2001, Arredondo and Gil de Perttierra 2012).

Frezella gen. n. differs from the above-mentioned genera in the morphology of the scolex, which includes a conical part with a muscular apical organ followed by a metascolex composed from two distinct zones: anterior, strongly wrinkled part posterior to uniloculate suckers, and posterior part with a few, deep longitudinal wrinkles (Figs. 1, 3, 9). Frezella can also be distinguished from the other proteocephalidean genera by the distribution of bundles of muscle fibres of the internal longitudinal musculature, with their conspicuous concentration on the lateral sides of proglottids (Figs. 13–17), by the penetration of some dorsal ovarian lobes to the cortex (Fig. 15), and the presence of additional pair of tiny, thin-walled osmoregulatory canals situated slightly dorsomedian to ventral canals (Fig. 12).

Frezella vaucheri gen. n. et sp. n.
Figs. 1–18

Description (based on 9 specimens): Proteocephalidae, Proteocephalinae. Testes, vitelline follicles and uterus medullary; ovary medullary, with a few follicles slightly penetrating to cortex. Total body length 112–122 mm (n = 3), maximum width up to 2.82 mm (n = 3). Strobila acraspedote, anapolytic, consisting of about 325–375 proglottids: 252–280 immatures (up to appearance of spermatozoa in vas deferens), 21–23 mature (up to appearance of eggs in uterus), 52–72 pre gravid (up to appearance of eggs in uterus)).
hooks in oncospheres); gravid proglottids present in some isolated pieces of strobila. Immature proglottids wider than long (length: width ratio 0.13–0.22), mature and pregravid proglottids wider than long (length: width ratio 0.12–0.60).

Scolex 1110–1575 long and 1040–1330 wide (n = 3), much wider than neck (width of scoleces studied using SEM 700–850; see Figs. 1–3), with metascolex composed of 2 different parts and conical apical end. Apical part short, slightly folded, with subspherical muscular apical organ, 55–90 long × 65–90 wide, group of small gland cells and network of osmoregulatory canals (Fig. 10). Middle part of scolex with 4 spherical uniloculate suckers and metascolex formed by numerous (several tens) longitudinal folds posterior to suckers, 300–355 long (Figs. 1, 3, 9); using SEM 210–290 long. Suckers spherical, 315–375 (n = 12) in diameter, with deep cavity and concentration of muscle fibres near their opening (Fig. 10); anterior and posterior margin with circular musculature (Fig. 10). Posterior part of scolex formed by metascolex with a few (2–3 on each side) deep longitudinal folds 395–660 long (Figs. 1, 3, 9). Neck (proliferation zone) with transverse folds, 645–1250 wide (Figs. 1, 9). Apex of scolex, sucker cavities, anterior part of metascolex and proliferation zone covered with capilliform filitriches of similar appearance.
and density (Figs. 4–7). Proglottids covered with acicular filitrches (Fig. 8).

Infer longitudinal musculature well developed, formed by 1 row of numerous bundles of muscle fibres on dorsal and ventral side, with conspicuous concentration of bundles on lateral sides of proglottids (Figs. 13–17). Ventral osmoregulatory canals thin-walled, wide, median to lateral bands of vitelline follicles, slightly sinuous (Fig. 11). Dorsal osmoregulatory canals thick-walled, relatively wide, surrounded by vitelline follicles (Figs. 12–17). Another pair of tiny, thin-walled canals situated slightly dorsomedian to ventral canals, ventral to lateralmost lobes of ovary (Fig. 12); canals difficult to observe, may form anastomoses.

Testes numerous, spherical, small, 50–70 in diameter, in 3 irregular layers (Figs. 13, 14), 279–420 in number ($\bar{x} = 358$, n = 9). Testes form 3 fields more or less separated by median line of proglottids (uterine stem) and vaginal canal with cirrus-sac and vas deferens (Fig. 11): aporal field with 145–220 testes, preporal field with 55–85 testes and postporal field with 79–116 testes. Testes present also in gravid proglottids.

Vas deferens strongly coiled, with loops forming elongated field reaching to, but not crossing, median line of proglottid (Figs. 11, 14). Cirrus-sac elongate, thin-walled, slightly widened towards distal (terminal) part (Fig. 12), 395–505 long and 100–160 wide (n = 31), its length representing 17–20% ($\bar{x} = 18$, n = 31) of proglottid width. Sperm duct (internal vas deferens) strongly coiled (Fig. 12). Cirrus muscular, occupies up to 60% (n = 30). Common genital atrium narrow, deep (Fig. 12). Genital pores alternating irregularly, markedly pre-equatorial, situated at 23–41% ($\bar{x} = 31$, n = 31) of proglottid length from anterior margin (Fig. 11).

Ovary medullary, bilobed, follicular, with some dorsal follicles penetrating between bundles of inner longitudinal
musculature to cortex (Fig. 15); length of ovary represents 24–37% of length of proglottid (x = 30, n = 62), its width representing 65–77% of width of proglottid (x = 72, n = 31; Fig. 11). Mehlis’ gland about 70–100 in diameter, representing 4–7% of proglottid width (n = 11). Relative ovarian size (see de Chambrier et al. 2012) about 15% of size of mature and pregravid proglottids.

Vaginal canal slightly sinuous in proximal part, almost straight in distal part, often (in 68% of 40 proglottids observed) with asymmetrical chamber-like cavity near genital pore (Figs. 11, 12); terminal part of vaginal canal (pars copulatrix vaginae) surrounded by chromophilic cells, with small vaginal sphincter (Fig. 12). Vagina anterior (in 37% of proglottids counted) or posterior (in 63% of proglottids counted; n = 41) to cirrus-sac. Vitelline follicles (in 37% of proglottids counted) or posterior (in 63% of proglottids counted) to cirrus-sac. Vitelline follicles representing 4–7% of proglottid width (n = 11). Relative ovarian size (see de Chambrier et al. 2012) about 15% of size of mature and pregravid proglottids.

Type locality: Xingú River in Altamira, State of Pará, Brazil (3°12’S; 52°12’W).

Type material: Holotype (CHIOC 37978a–h – complete specimen and cross sections on eight slides), 5 paratypes including hologenophore (CHIOC 37979a–d, 37980a–d; IPCAS C-663; MHNG-PLAT 86723).

Site of infection: Anterior intestine.

Prevalence: 1 of 2 fish examined on 20 April 2013 infected (fish 20 cm long was uninfected); in September 2013, none of 6 fish (total length 35–42 cm) harboured cestodes.

Etymology: Specific name refers to Claude Vaucher, Switzerland, for his extraordinary contribution to cestode systematics.

Molecular identification: A fragment of 1563 bp of the 28S RNA gene was amplified. The nucleotide sequence is available in the GenBank database (KM387399).

Remarks. *Frezella vaucheri* is the only species of the monotypic *Frezella* and thus it is characterised by the features listed in its Differential diagnosis (see above). This cestode is probably specific to *Tocantinsia piresi*, a poorly known auchenipterid catfish. The most characteristic feature of the new species and the new genus is the presence of a metascolex composed of two markedly different parts, which is unique in the Proteocephalinae. In scolex morphology, *F. vaucheri* somewhat resembles species of *Brooksiella* Rego, Chubb et Pavanelli, 1999, which also possess uniloculate suckers and a folded metascolecal surrounding the suckers (predominantly posterior to the suckers in the new genus), but the metascolecal is not divided as in *Frezella* (see figs. 9, 10 in de Chambrier et al. 2004b). In addition, *Brooksiella praepetalis* (Rego, Santos et Silva, 1974) has a much smaller body (12–22 mm vs 112–122 mm), weakly-developed internal longitudinal musculature and eggs with two polar projections (de Chambrier et al. 2004b). *Peltidocotyle lenha* (Woodland, 1933) has also the anterior part of the metascolecal deeply folded (see fig. 104 in de Chambrier and Vaucher 1999) and the posterior part also bears few folds (see fig. 1 de Chambrier and Scholz 2008), but it possesses bilocular suckers and belong to a different subfamily, the Peltidocotylinae Woodland, 1934.

Among the proteocephalideans that parasitise auchenipterid catfishes (see Table 1), *Nupelia tomasi* de Chambrier et Vaucher, 1999 described from *Trachelyopterus galeatus* (Limnaeus) and *Trachelyopterus cf. striatus* (Steindachner) in Paraguay resembles *F. vaucheri* in the possession of bundles of muscle fibres of the internal longitudinal musculature concentrated on the lateral sides of the body (see figs. 83 and 84 in de Chambrier and Vaucher 1999) and penetration of some ovarian follicles to the dorsal cortex (fig. 84 in de Chambrier and Vaucher 1999). However, *N. tomasi*, which belongs to the subfamily Nupelinae Pavaneli et Rego, 1991 (see Rego 1994 for diagnosis of the subfamily), differs from the new species by numerous features, such as the absence of a metascolecal and apical organ, markedly lower number of the testes (144–180 vs 279–420 in *F. vaucheri*) and the smaller size of the body (total length 42–72 mm vs 112–122 mm; maximum width about 1.5 mm vs 2.8 mm) (see de Chambrier and Vaucher 1999).
Scholzia emarginata (Diesing, 1850) (subfamily Proteocephalinae Woodland, 1933) from the redtail catfish, Phractocephalus hemioliopterus (Bloch et Schneider), in South America and Electrotaenia malopteruri (Fritsch, 1886) of the Gangesiinae Mola, 1929, from the electric catfish, Malapterurus electricus (Gmelin), in Africa also have a peculiar arrangement of the inner longitudinal musculature. In the former species, muscle fibres are more dense laterally similarly as it is in F. vaucheri, but the musculature is much less developed in S. emarginata compared to the new species (see de Chambrier et al. 2005). In E. malopteruri, muscle fibres form a wide longitudinal band alongside the midline on the dorsal side of proglottids (see fig. 3d,e in de Chambrier et al. 2004c).

Several taxa of the subfamily Endorchiinae Woodland, 1934, such as Endorchis piraebea Woodland, 1934 from the pimelodid catfish kemakuma, Brachyplatystoma filamentosum (Lichtenstein), and those of the Peltidocotyli-
Table 1. Proteocephalidean tapeworms from aucheniferid catfishes.

<table>
<thead>
<tr>
<th>Subfamily</th>
<th>Species</th>
<th>Host</th>
<th>Distribution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corallobothriinae</td>
<td>Corallothuenia sp.</td>
<td>Ageneiosus pardalis (Linnaeus)</td>
<td>MRB</td>
<td>Brooks and Deardorff (1980)</td>
</tr>
<tr>
<td>Freze, 1965</td>
<td>Endorchis aucheniferi</td>
<td>de Chambrier et Vaucher, 1999</td>
<td>PRB</td>
<td>de Chambrier and Vaucher</td>
</tr>
<tr>
<td>Woodland, 1934</td>
<td>Endorchis sp.</td>
<td>Aucheniferus osteomystax (Steindachner)</td>
<td>PRB</td>
<td>de Chambrier and Vaucher</td>
</tr>
<tr>
<td>Monticillinae</td>
<td>La Rue, 1911</td>
<td>Ageneicella brevisflis</td>
<td>PRB</td>
<td>de Chambrier and Vaucher</td>
</tr>
<tr>
<td>de Chambrier et Vaucher, 1999</td>
<td></td>
<td>(Linnaeus), A. militaris</td>
<td></td>
<td>(Valenciennes)</td>
</tr>
<tr>
<td>Nupeliinae</td>
<td>Pavanelli et Rego, 1991</td>
<td>Ageneicella brevisflis</td>
<td>PRB</td>
<td>Brooks and Deardorff (1980),</td>
</tr>
<tr>
<td>de Chambrier et Vaucher, 1999</td>
<td></td>
<td>(Linnaeus), A. militaris</td>
<td></td>
<td>de Chambrier et al. (2004b)</td>
</tr>
<tr>
<td>Peltidocotylinae</td>
<td>Luciaella ivanovae</td>
<td>Ageneicella inermis*</td>
<td>PRB</td>
<td>Gil de Pertierra (2009)</td>
</tr>
<tr>
<td>Woodland, 1934</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteocephalinae</td>
<td>Cangatiella arandasi</td>
<td>Trachelebothriops galeatus*</td>
<td>PRB</td>
<td>Pavanelli and Machado dos Santos (1991)</td>
</tr>
<tr>
<td>La Rue, 1911</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodland, 1933</td>
<td>(Woodland, 1935)</td>
<td>Ageneicella inermis*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gibsoniella meursaulti</td>
<td>(Woodland, 1935)</td>
<td>A, PRB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* type host; MRB – Magdalena River basin; PRB – Paraná River basin; A – Amazon.

nae, e.g. Luciaella ivanovae Gil de Pertierra, 2009 from the aucheniferid Ageneiosus inermis (Linnaeus), resemble the new cestode in the presence of some dorsal ovarian follicles in the cortex (see de Chambrier and Vaucher 1997 and fig. 1E in Gil de Pertierra 2009). However, the former species can be easily distinguished from *F. vaucheri* by the cortical position of viteline follicles (Rego 1994).

The presence of a chamber-like enlargement of the distal (external) part of the vaginal canal, which was observed in two thirds of proglottids in *F. vaucheri*, is rare among proteocephalidean cestodes. The terminal part of the vagina of Mariauxiella pimelodi de Chambrier and Rego, 1995, a parasite of Pimelodus ornatus Kner and Pimelodidae sp. from Brazil, is also enlarged, but symmetrically (see fig. 4 in de Chambrier and Rego 1995) unlike that of *F. vaucheri*, which is often asymmetrical (Figs. 11, 12).

The precocious uterine aperture, which is present in *F. vaucheri*, has been reported in proteocephalideans parasitising reptiles, such as species of Crepidobothrium Monticelli, 1899 and Testudotaenia Freze, 1965, in which the eggs are laid immature through a longitudinal aperture in pregravid proglottids (see de Chambrier 1988, 1989a,b, de Chambrier et al. 2009).

The high number of the testes is a good discriminant character for the new taxon. Only Thaumiasioscolex didelphis Cañeda-Guzmán, de Chambrier et Scholz, 2001 has more testes than *F. vaucheri* (432–548 vs 279–420) among the Proteocephalidea (Cañeda-Guzmán et al. 2001). A few other species from different subfamilies have a similar number of the testes, e.g. Proteocephalus paraguayensis (Rudin, 1917) (238–344 testes), Monticellia ventreiri de Chambrier et Vaucher, 1999 (222–325), Nomimoscolex ad-
portance at least at the generic and species level (see, e.g. de Chambrier and Vaugher 1999, Coquille and de Chambrier 2008, Scholz et al. 2013).

Brooks and Rasmussen (1984) distinguished three different types of the metascolex within the Proteocephalidea: (1) formed by an enlargement of the proliferation zone (neck), e.g. *Choanocolex absciusus* (Riggenbach, 1896) (see fig. 35 in Rego 1999); (2) formed by proliferation of the tissue around each sucker, e.g. *Brooksiella praeputialis* (see figs. 9, 10 in de Chambrier et al. 2004b); and (3) formed by proliferation of the scolex tissue around the base of the suckers, e.g. *Amphoteromorphus pirateeab Woodland, 1934* (see figs. 18, 19 in de Chambrier and Vaugher 1997).

The metascolex of *Frezella vaucheri* somewhat resembles types 2 (some folds are present around the suckers, mainly their posterior parts) and 3 (scolex tissue is proliferated around the base of the suckers). In fact, this metascolex can be considered to represent another type, which is characterised by division of the metascolex into two zones, with the anterior one strongly wrinkled and the posterior one sparsely folded (Fig. 1). Among all species of *Proteocephalidea, Spatalifer maringaeensis* Pavanelli et Rego, 1989 and *Petidocotyle lenha* have a somewhat similar metascolex, which consists of two zones.

As far as the authors are aware, there are no data on the parasites of *Tocantinsia pireisi*, which occurs in the Amazon and Tocantins River basins (Barros 2012, Froese and Pauly 2014). This fish has a nocturnal omnivorous behaviour (feeds mainly on fruits and seeds) and its feeding behaviour is directly affected by the hydrologic cycle, i.e. wet and dry seasons (Carvalho and de Resende 1984), which may influence the seasonality in the occurrence and maturation of its parasites. *Frezella vaucheri* thus represents the first parasite reported from this poorly known fish and the 11th proteocephalidean described from auchenipterid catfishes (Table 1).

Based on a molecular phylogenetic study of tetraphyllidean-like cestodes of elasmobranchs, Caira et al. (2014) proposed a new order, Onchoproteocephalidea, to accommodate several taxa from elasmobranchs previously placed in the tetraphyllidean family Onchobothriidae Braun, 1900 and the entire order Proteocephalidea Mola, 1934. However, this new order was not sufficiently circumscribed and no morphological synapomorphies were provided in its brief diagnosis. In addition, this diagnosis contains some errors, such as the presence of a spined cirrus (“Cirrus armed with spintriches”; in fact, the cirrus is unspined in proteocephalideans, the only exception being *Euzetielia tetraphylliformis* de Chambrier, Rego et Vaugher, 1999 – see de Chambrier et al. 1999) and the scolex with four muscular bothridia (majority of proteocephalideans possess spherical suckers or acetabula indistinguishable from those in cyclophyllidean cestodes). A putative synapomorphy, i.e. the presence of simple gladiate microtriches, is also questionable and has to be verified because detailed data on surface ultrastructure are available for only about 30 species of proteocephalideans (out of more than 300 nominal species – Arredondo et al. 2014).

Even though relatedness of proteocephalideans with some of the ‘hooked’ tetraphyllidean-like cestodes such as those of *Acanthobothrium van Beneden, 1849* is not questioned, the taxonomic proposal of the order Onchoproteocephalidea is considered to be premature and not justified sufficiently because a thorough comparative taxonomic study of morphologically quite distinct taxa was not carried out. For the reasons listed above, the Proteocephalidea is retained as a valid order in the present paper, but future systematic studies should focus on a comparative analysis of the taxa that form the monophyletic lineage for which Caira et al. (2014) proposed the new order.

Acknowledgements. The authors are indebted to Aldenice de Nazaré Pereira, Fabiano Paschoal and Felipe Bisaggio Pereira for invaluable help with collection and dissection of fish. Thanks are also due to Jan Brabec for help with sequencing and analysing sequences, Roman Kuchta (both České Budějovice) and André Puiz (Geneva) for SEM micrographs, to Janik Pralong and Gilles Roth (Natural History Museum, Geneva) for their technical help and to Emíl José Hernández Ruz (Universidade Federal do Pará – Campus Altamira) for providing the facilities during the field trip. The senior author thanks Jean Mariaux for welcome him in the Natural History Museum, Geneva. This study was supported by the ‘Ciência sem fronteiras’ Brazilian program – visitor research mobility (No. 135/2012) (stay of T. S. in Brazil at the Universidade Federal Rural de Rio de Janeiro), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grants to José Luís Luque (Nos. 474077/2011-0, 304254/2011-8, 402665/2012-0); the National Science Foundation (PBI awards Nos. 0818696 and 0818823), Institute of Parasitology (institutional support RVO 60073444) and Czech Science Foundation (P505/12/G112). P.V.A. was supported by postgraduate fellowship from CNPq.
Brooks D.R., Deardorff, T.L. 1980: Three proteocephalid ces
todes from Columbian Siluriformes fishes, including Nomino
Brooks D.R., Rasmussen G. 1984: Proteocephalid cestodes from
Venezuela with a new classification of the Monticelli-
Caira J.N., Jensen K., Waschenbach A., Olson P.D., Lit
tlewood D.T.J. 2014: Orders out of chaos – molecular phylo-
genetics reveals the complexity of shark and stingray tapeworm
relationships. Int. J. Parasitol. 44: 55–73.
Cañeda-Guzmán I.C., de Chambrier A., Scholz T. 2001:
Thamasioccales didophilus n. gen. and n. sp. (Eucestoda: Proto-
cephalidae) from the black-eared opossum Didelphis marsu-
pialis from Mexico, the first proteocephalidean tapeworm from
Carvalho F.M., de Resende E.K. 1984: Aspectos da biologia de
Tocantinsia depressa (Siluriformes, Auchenipteridae). Amazoni-
niana 8: 327–337.
de Chambrier A. 1988: Crepidobothrium garzonii n. sp. (Cestoda: Protoce
phalidea) parasite de Bothrops alternatus Dum. Bibr. & Dum., 1854 (Spipentes: Viperidea) au Paraguay. Rev. Suisse
de Chambrier A. 1989a: Revision du genre Crepidoboth-
rium Monticelli, 1900 (Cestoda: Proteocephalidea) parasite
d’oiphidiens néotropicaux. 1. C. gerrardii (Baird, 1860) et C. vi-
de Chambrier A. 1989b: Revision du genre Crepidoboth-
rium Monticelli, 1900 (Cestoda: Proteocephalidea) parasite
d’oiphidiens néotropicaux. 2. Crepidobothrium dolphis Freze, 1965, Crepidobothrium lachesis (MacCallum, 1921) et con-
de Chambrier A. 1990: Redescription de Proteocephalus para-
aguayensis (Rudin, 1917) (Cestoda: Proteocephalidea) parasite de
Hydrodynastes gigas (Dum., Bibr. & Dum., 1854) du Paraguay.
Syst. Parasitol. 16: 85–97.
de Chambrier A. 2001: A new tapeworm from the Amazon, Ama-
zotaenia yvetae n. gen., n. sp. (Eucestoda: Proteocephalidea)
w tapeworm Postgangesia inarmata n. sp. (Eucestoda: Pro-
tocephalidea: Gangesiinae), parasite of Silurus glanis (Sil-
uriformes) from Iraq and some considerations on Gangesiinae.
de Chambrier A., Bini T.T., Scholz T. 2012: Ophiotenia
bungari n. sp. (Cestoda), a parasite of Bungarus fasciatus (Sch-
neider) (Ophidia: Elapidae) from Vietnam, with comments on
relative ovarian size as a new and potentially useful diagnostic
character for proteocephalidean tapeworms. Syst. Parasitol. 81:
39–50.
de Chambrier A., Coquille S.C., Tkach V., Mariaux J. 2009: Redescription of Testudotaenia testudo (Magath, 1924)
(Eucestoda: Proteocephalidea), parasites of Phractocephalus hemioliopterus (Pisces: Pimelodidae) from Argentina and new
observations on Order out of chaos – molecular phylo-
genetics reveals the complexity of shark and stingray tapeworm
relationships. Int. J. Parasitol. 44: 55–73.
de Chambrier A., Scholz T. 2008: Tapeworms (Cestoda: Pro-
tocephalidea) of firewood catfishes. Syst. Parasitol. 73: 111–120.
de Chambrier A., Scholz T., Iraheem M.H. 2004c: Redescription of Electraotaenia malopteruri (Fritsch, 1886) (Ces-
toda: Proteocephalidea), parasite of Malapterurus electricus (Siluriformes: Malapteruridae) from Egypt. Syst. Parasitol. 57:
de Chambrier A., Scholz T., Kuchta R. 2014: Taxonomic
status of Woodward’s enigmatic tapeworms (Cestoda: Proto-
cephalidea) from Amazonian catfishes: back to museum collec-
de Chambrier A., Scholz T., Kuchta R., Poseł P., Mortenthaler M., Chuquipiondo Guardia C. 2006: Tape-
worms (Cestoda: Proteocephalidea) of fish from the Amazon
River in Peru. Comp. Parasitol. 73: 111–120.
de Chambrier A., Vaucher C. 1997: Révision des cestodes
(Monticellidae) décrits par Woodland (1934) chez Brachy-
plastystoma filamentosum avec redéfinition des genres Endorchis
Woodland, 1934 et Nominoscolex Woodland, 1934. Syst. Para-
de Chambrier A., Vaucher C. 1999: Proteocephalidea et Monti-
cellidae (Eucestoda: Proteocephalidea) parasites des poissons
deau douce du Paraguay avec descriptions d’un genre nouveau et
de Chambrier A., Zeindner M.P., Vaucher C., Mariaux J. 2004a: The evolution of the Proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development. Syst. Parasitol. 57:
159–171.
Cherry L. 2009: Unified terminology for cestode microtriches: a proposal from the international workshops on cestode system-
n. sp. n., a parasite of Norops trachyderma (Reptilia, Crocodil-
ae) from Argentina and new observations on Phractocephalus microphius n. sp. (Cestoda: Proteocephalidea) parasite of
C. garzonii n. sp. (Cestoda: Proteocephalidea) parasite of
Ophiotaenia nicoleae sp. n. (Eucestoda: Proteocephalidea), and a parasite of Thecadactylus rapicanda (Gekkonidae) in Ecuador.
Froese R., Pauly D. (Eds.) 2014: FishBase. World Wide Web elec-
Freze V.I. 1965: Essentials of Cestodology. Vol. V. Proteoce-
Gil de Pertierre A.A. 2009: Luciella ivanovae n. g., n. sp.
(Eucestoda: Proteocephalidea: Peltidocotylinae), a parasite of
Ageneiosus inermis (L.) (Siluriformes: Auchenipteridae) in Ar-
Gil de Pertierre A.A., de Chambrier A. 2000: Rudolphiella
szidati n. sp. (Proteocephalidea: Monticellidae, Rudolphi-
linea) parasite of Lucioptemodous pati (Valenciennes, 1840) (Pisces: Pimelodidae) from Argentina and new observations on
Rudolphiella lobosa (Riggenbach, 1895). Rev. Suisse Zool. 107:
81–95.
Hypša V., Škříčková A., Scholz T. 2005: Multigene analysis and
secondary structure characters in a reconstruction of phy-
ology, evolution and host-parasite relationship of the order Pro-
Mees G.F. 1974: The Auchenipteridae and Pimelodidae of Suri-
Mees G.F. 1984: A note on the genus Tocantinsia (Pisces, Nema-
Miranda Ribeiro A. 1920: Peixes (excl. Characinidae). Comissão de Linhas Telegraphicas Estratégicas de Matto-Grosso ao Ama-

Woodland W.N.F. 1934: On the Amphilaphorchidinae, a new subfamily of proteocephalid cestodes, and Myzophorus admonitticellia, gen. and sp. n., parasitic in Pirinampus spp. from the Amazon. Parasitology 26: 141–149.

Received 4 June 2014 Accepted 7 August 2014 Published online 1 January 2015

Cite this article as: Alves P.V., de Chambrier A., Scholz T., Luque J.L. 2015: A new genus and species of proteocephalidean tapeworm (Cestoda), first parasite found in the driftwood catfish Tocantinsia piresi (Siluriformes: Auchenipteridae) from Brazil. Folia Parasitol. 62: 006.