In vitro secretion of metabolic end-products by piscine haemoflagellates Cryptobia salmositica and C. bullocki (Kinetoplastida: Bodonidae) and the relationship of these products to the pH in the medium

Bernadette F. Ardelli1,2 and Patrick T.K. Woo1

\begin{itemize}
\item 1Department of Zoology and Axelrod Institute of Ichthyology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada;
\item 2Current address: Institute of Parasitology, McGill University, 21-111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, H9X 3V9, Canada
\end{itemize}

Key words: Cryptobia, pyruvate, lactate, hydrogen peroxide, pH

Abstract. Pathogenic and nonpathogenic strains of Cryptobia salmositica Katz, 1951 and C. bullocki Strout, 1965 produced hydrogen peroxide, pyruvate and lactate under in vitro conditions in Minimum Essential Medium (MEM). As parasite number increased, the phenol red in the medium changed from red to yellow. This change was not associated with a decrease in pH, or an increase in pyruvate or lactate, but was correlated with an increased secretion of hydrogen peroxide. Parasites incubated at 10°C in medium at pH 6.0, 6.5, 7.0 and 7.3 were active for about 1 week with decreasing activity in the absence of serum. Parasites in saline (pH 6.0, 6.5, 7.0 and 7.3) were nonmotile within 24 h and were dead in about 1 week. This suggests that these Cryptobia spp are sensitive to changes in pH and require medium which is buffered, either with serum or Heps.

MATERIALS AND METHODS

In vitro culture of Cryptobia spp. strains. A cloned strain of the pathogenic C. salmositica was used to infect rainbow trout Oncorhynchus mykiss (Walbaum). The strain was initially isolated from the leech Piscicola salmositica and details of the cloning of the parasite (Woo 1979) and fish maintenance (Ardelli and Woo 1998) have been described. The pathogenicity of C. salmositica is maintained by serial passage in rainbow trout. To culture pathogenic C. salmositica, blood was withdrawn from an infected trout and inoculated aseptically into sterile culture flasks containing MEM supplemented with Hanks’s salts, 100 mg/ml L-glutamine, 25 mM Heps and 25% heat-inactivated fetal bovine serum (FBS). After three days, an aliquot containing parasites, but no host cells, were transferred to sterile culture flasks containing MEM. The nonpathogenic C. salmositica was attenuated through serial in vitro culture in MEM (Woo and Li 1990) and is infective to trout but does not cause disease (Li and Woo 1995). C. bullocki was initially isolated from the blood of a southern flounder Paralichthys lethostigma (Jordau et Gilbert) by Dr. E. Burreson and has since been maintained in MEM (Woo and Thomas 1991).

Experimental design. MEM was obtained as a powder (Gibco) and a 1.2 g/l stock solution was prepared in sterile water. Horseradish peroxidase (HRPO – Type II, salt-free powder; Sigma) was dissolved in 0.05 M potassium phosphate buffer (pH 7.0) in culture medium, and equal parts were added to each flask. MEM was obtained as a powder; Sigma) was dissolved in 0.05 M potassium phosphate buffer (pH 7.0) in culture medium, and equal parts were added to each flask. MEM supplemented with Hanks’s salts, 100 mg/ml L-glutamine, 25 mM Heps and 25% heat-inactivated fetal bovine serum (FBS). After three days, an aliquot containing parasites, but no host cells, were transferred to sterile culture flasks containing MEM. The nonpathogenic C. salmositica was attenuated through serial in vitro culture in MEM (Woo and Li 1990) and is infective to trout but does not cause disease (Li and Woo 1995). C. bullocki was initially isolated from the blood of a southern flounder Paralichthys lethostigma (Jordau et Gilbert) by Dr. E. Burreson and has since been maintained in MEM (Woo and Thomas 1991).

Experimental design. MEM was obtained as a powder (Gibco) and a 1.2 g/l stock solution was prepared in sterile water. Horseradish peroxidase (HRPO – Type II, salt-free powder; Sigma) was dissolved in 0.05 M potassium phosphate buffer (pH 7.0) in culture medium, and equal parts were added to each flask. MEM was obtained as a powder; Sigma) was dissolved in 0.05 M potassium phosphate buffer (pH 7.0) in culture medium, and equal parts were added to each flask. MEM supplemented with Hanks’s salts, 100 mg/ml L-glutamine, 25 mM Heps and 25% heat-inactivated fetal bovine serum (FBS). After three days, an aliquot containing parasites, but no host cells, were transferred to sterile culture flasks containing MEM. The nonpathogenic C. salmositica was attenuated through serial in vitro culture in MEM (Woo and Li 1990) and is infective to trout but does not cause disease (Li and Woo 1995). C. bullocki was initially isolated from the blood of a southern flounder Paralichthys lethostigma (Jordau et Gilbert) by Dr. E. Burreson and has since been maintained in MEM (Woo and Thomas 1991).

Address for correspondence: P.T.K. Woo, Department of Zoology and Axelrod Institute of Ichthyology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada. Phone: ++1 519 824 4120, Extension 3581; Fax: ++1 519 767 1656; E-mail: pwoo@uoguelph.ca
buffer (pH 7.0) at a concentration of 5 mg/ml. Aliquots were still active and motile after 1 week while those in MEM without serum were still active and motile for 24 h, but became sluggish after 1 week. However parasites in medium containing serum or without serum supplement) or saline at pH 6.0, 6.5, 7.0 and 7.3. Parasites in MEM without serum were active and motile for 24 h, but became sluggish after 1 week. However parasites in medium containing serum were still active and motile after 1 week while those in saline were dead by 24 hours.

Eighty tissue culture flasks were divided into eight groups (A1, A2, B1, B2, C1, C2, D1, and D2; n = 10/group). Flasks in Groups A1, B1, C1 and D1 contained 50.0 ml of MEM supplemented with 10 mg/ml of phenol red (MEM+PR) and flasks in Groups A2, B2, C2 and D2 contained 50.0 ml of MEM, but no phenol red (MEM-PR). Each flask in Groups B1 and B2 was inoculated with 100,000 cells of pathogenic C. salmositica, C1 and C2 with 100,000 cells of nonpathogenic C. salmositica and D1 and D2 with 100,000 cells of C. bullocki. Groups A1 and A2 were control flasks and did not contain parasites. Flasks were sampled bi-weekly (2.5 ml) and the number of parasites, pyruvate, lactate, hydrogen peroxide and pH of the culture medium were determined. The number of parasites were counted using a haemocytometer (Archer 1965) and the pH of the medium was determined using a pH meter.

Pyruvate assay. Pyruvate was determined enzymatically. The method for determining pyruvate depended on the oxidation of reduced nicotinamide-adenine dinucleotide (NAD) in the presence of lactate dehydrogenase at pH 7.0. A Tris buffer was added to the supernatant to obtain a pH of 7.0, and the oxidation of reduced NAD was measured spectrophotometrically by the change in extinction at its peak absorption. The concentration of pyruvate in the sample was obtained from a reference scale established with pyruvate solutions at 50, 100 and 200 mmol/l (Sigma).

To determine pyruvate, 2.0 ml of MEM was pipetted into a centrifuge tube containing 4.0 ml of cold 8% perchloric acid (to precipitate proteins). Proteins were removed (by centrifugation for 3 min at 10,600 g) and 2.0 ml of supernatant was added to a cuvette containing 0.5 ml of 1.5 M Tris buffer. After mixing, 0.5 ml of 1.0 mg/ml of NADH was added and the absorbance read at 340 nm against water as the reference. Lactate dehydrogenase (0.05 ml; 1000 U/ml) was added, and the decrease in absorbance at 340 nm (Marbach and Weil 1967).

Lactate assay. Lactate was determined enzymatically. The procedure was based on the principle that lactic acid is converted to pyruvate and hydrogen peroxide by lactate oxidase. In the presence of the hydrogen peroxide formed, peroxidase catalyses the oxidative condensation of chromogen precursors to produce a coloured dye with an absorption maximum at 540 nm. The increase in absorbance at 540 nm is directly proportional to the lactate concentration in the sample.

To determine lactate, a 1.0 ml aliquot of a solution containing 400 U/l of lactate oxidase, 2400 U/l horseradish peroxidase and chromogen precursors in 0.2 M glycine buffer (Sigma) was pipetted into a cuvette. Ten microlitres of MEM were added and allowed to react with the lactate mixture for 10 min. The absorbance was read at 540 nm using water as the reference (Marbach and Weil 1967).

Hydrogen peroxide assay. The technique used for the measurement of hydrogen peroxide is based on the horseradish peroxidase (HRPO)-dependent conversion of phenol red by hydrogen peroxide (H2O2) into a compound (not yet identified) with an increased absorbance at 600-610 nm. To determine nanomoles of H2O2 produced per cell, standard curves were prepared using dilutions of a H2O2 solution of known molarity (Sigma). To 1-ml volumes of MEM, 10 µl of H2O2 were added to result in final concentrations ranging from 1 to 50 µM. The tubes were incubated at 25°C, and brought to pH 12.5 by the addition of 10 µl NaOH (1N). The absorbance was read at 600-610 nm against a blank containing 1 ml of MEM, 10 µl H2O2 and 10 µl NaOH (1N). A wavelength of 610 nm was chosen, as the H2O2 concentration in the 1-60 µM range, is linear, and corresponds to 1-60 nmoles of H2O2 per ml.

To determine hydrogen peroxide, a 1.0-ml aliquot of MEM was added to a cuvette containing horseradish peroxidase (10 µl of a 50 µg/ml solution) and incubated at room temperature for 5 minutes. NaOH (10 µl of 1 N) was added to the cuvette to adjust the pH to 12.5; this was to eliminate changes in the absorbance of phenol red due to its behaviour as a pH indicator. The absorbance was read at 610 nm against a blank containing no horseradish peroxidase. The amount of hydrogen peroxide in the culture medium was extrapolated from the standard curve and expressed in mM/l (Pick and Keisari 1980).

Statistical analysis. Data were analysed using a one-way analysis of variance (ANOVA). When the distribution was not normal and the variances were unequal, an ANOVA on ranks was used. Significantly different results were analysed using a multiple comparison procedure (Student-Newman-Keuls test) for equal sample sizes. Significance was evaluated at P ≥ 0.05.

RESULTS

Pathogenic and nonpathogenic C. salmositica and C. bullocki multiplied readily in both MEM+PR medium or MEM-PR medium. The pathogenic C. salmositica did not multiply as readily as nonpathogenic C. salmositica or C. bullocki in either medium. In MEM+PR medium a significant difference (p = 0.0830) in number was not detected between C. salmositica (non-pathogenic) and C. bullocki. However in MEM-PR medium C. bullocki multiplied faster than nonpathogenic C. salmositica and this was significantly different at 5 (p = 0.0309), 7 (p = 0.0408) and 11 (p = 0.0142) weeks post inoculation (p.i.). Parasite numbers peaked at 7 weeks p.i. and then declined in (either MEM+PR or MEM-PR) (Fig. 1). The phenol red in the culture medium changed from red to yellow as parasite number increased. However, the pH remained constant at 7.4 until 9 weeks after incubation at which time it decreased to 7.2. This observation was the same for both strains of C. salmositica and for C. bullocki. Also, the pH of the MEM-PR medium did not change as parasite number increased.

To determine the effects of pH on the viability of Cryptobia spp., parasites were incubated in MEM (with or without serum supplement) or saline at pH 6.0, 6.5, 7.0 and 7.3. Parasites in MEM without serum were active and motile for 24 h, but became sluggish after 1 week. However parasites in medium containing serum were still active and motile after 1 week while those in saline were dead by 24 hours.
Ardelli, Woo: Metabolic end-products of Cryptobia spp.

Fig. 1. Multiplication of Cryptobia salmositica (pathogenic and nonpathogenic strains) and Cryptobia bullocki in Minimum Essential Medium with (MEM+PR) or without (MEM-PR) phenol red. bf – pathogenic C. salmositica; v – nonpathogenic C. salmositica.

Hydrogen peroxide was not detected in MEM-PR medium and in control flasks without parasites. It was only detected in flasks containing parasites and phenol red (Table 1). Levels of hydrogen peroxide were low at 1-4 weeks in pathogenic C. salmositica but increased at 9 weeks p.i. The nonpathogenic C. salmositica produced significantly ($p = 0.0205$) higher amounts of hydrogen peroxide than the pathogenic C. salmositica or C. bullocki 11 ($p = 0.0487$) weeks p.i. In general, hydrogen peroxide levels increased throughout the study and were highest at 11 weeks p.i. (Table 1).

In MEM+PR medium pyruvate was first detectable at 1 week p.i. Lactate levels fluctuated over the course of the study, and peaked at 3 (pathogenic C. salmositica), 5 (nonpathogenic C. salmositica) and 9 (C. bullocki) weeks p.i. Lactate levels were higher in pathogenic C. salmositica, than in nonpathogenic C. salmositica or C. bullocki 3-11 weeks p.i. and declined in all groups at 11 weeks (Table 3). In MEM-PR medium, lactate levels were higher in pathogenic C. salmositica in comparison to nonpathogenic C. salmositica or C. bullocki (Table 3).

DISCUSSION

After 11 weeks the phenol red in the culture of C. salmositica and C. bullocki had changed from red to yellow. An earlier study on Trypanosoma brucei bloodstream forms reported a similar colour change and this was attributed to the production of pyruvate, which lowered the pH of the medium and caused the colour change (Zinsstag et al. 1991). Pick and Keisari (1980) showed that macrophages released considerable amounts of hydrogen peroxide in response to phagocytic and other membrane stimuli. They noted that the phenol red in the medium changed from red to yellow whenever large amounts of hydrogen peroxide were present and that the change in colour was not due to a decrease in pH.

Our results mirror those of Pick and Keisari (1980) however, there are some differences. Cryptobia spp. excrete pyruvate as a result of glucose metabolism but they also produce lactate. Cryptobia spp. have lactate dehydrogenase and thus are capable of converting pyruvate into lactate (Ardelli et al. 2000). Cryptobia (present study) and T. brucei (see Zinsstag et al. 1991) differ considerably in the amounts of pyruvate produced. If pyruvate decreased the pH in trypanosome culture then the low levels of pyruvate excreted by Cryptobia spp. cultures would explain the constant pH but not the colour changes noted in the present study.

We suggest that the colour change in the medium is due to production of hydrogen peroxide by Cryptobia spp. C. salmositica and C. bullocki excreted more hydrogen peroxide than either lactate or pyruvate. If either end-product of glycolysis were responsible for the colour change/acidity then these products were expected to increase with time. However lactate and pyruvate levels were low 11 weeks after culture while hydrogen peroxide levels were highest. The increased hydrogen peroxide in the MEM+PR medium paralleled the colour change. Many enzymatic reactions result in the generation of hydrogen peroxide as a by-product of the conversion of various substrates. The hydrogen peroxide produced is highly toxic and detoxification is mediated by catalase. In Cryptobia salmositica, catalase...
is mostly localised in glycosomes, but may be expelled into the cytoplasm of the cell (Ardeïli et al. 2000). Cryptobia spp. can modify the catalase content in glycosomes in response to its environment (either in culture or in the blood of their host). Ardeïli et al. (2000) suggested that the increase in catalase content was a response to accumulation of oxidative metabolites in culture, and that they included hydrogen peroxide. This hypothesis is supported in the present study.

Organic amine-based buffers such as Hepes are commonly used to increase the H^+ buffering power in a solution (Ganitkevich 1999) and 20 mM Hepes buffer “clamps” the pH at 7.3 (Shigematsu and Arita 1999). Ardeïli and Woo (1998) suggested that increasing the buffer capacity from 25 mM to 100 mM would extend the multiplication phase of Cryptobia spp. because the pH remained constant for a longer time. Our present data suggest that glucose and L-glutamine might be the

Table 1. *In vitro* production of hydrogen peroxide by pathogenic and nonpathogenic strains of Cryptobia salmositica and C. bullocki in medium with (MEM+PR) or without (MEM-PR) phenol red.

<table>
<thead>
<tr>
<th>Week</th>
<th>Pathogenic C. salmositica MEM+PR</th>
<th>Nonpathogenic C. salmositica MEM-PR</th>
<th>C. bullocki MEM+PR</th>
<th>C. bullocki MEM-PR</th>
<th>P-value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.11 ± 0.0004^1</td>
<td>0.23 ± 0.02</td>
<td>0.27 ± 0.05</td>
<td>0.4878</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.12 ± 0.002</td>
<td>4.27 ± 0.31</td>
<td>4.99 ± 1.77</td>
<td>0.0733</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.65 ± 0.03</td>
<td>5.36 ± 1.49</td>
<td>5.54 ± 2.14</td>
<td>0.0918</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.73 ± 0.03</td>
<td>20.2 ± 5.13</td>
<td>19.6 ± 4.27</td>
<td>0.0385</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$9.73 \pm 1.54^*$</td>
<td>64.0 ± 9.3</td>
<td>39.8 ± 9.23</td>
<td>0.0573</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>31.3 ± 5.8</td>
<td>10.0 ± 6.8</td>
<td>11.5 ± 7.16</td>
<td>0.0643</td>
<td></td>
</tr>
</tbody>
</table>

1 Mean ± standard deviation of ten replicates expressed as nM of hydrogen peroxide produced per cell.

2 Not detectable using the horseradish peroxidase assay.

3 P-value among the groups (at each sampling period) evaluated at $p \geq 0.05$.

* Significant difference.

Table 2. *In vitro* production of pyruvate by pathogenic and nonpathogenic strains of Cryptobia salmositica and C. bullocki in medium with (MEM+PR) or without (MEM-PR) phenol red.

<table>
<thead>
<tr>
<th>Week</th>
<th>Pathogenic C. salmositica MEM+PR</th>
<th>Nonpathogenic C. salmositica MEM-PR</th>
<th>C. bullocki MEM+PR</th>
<th>C. bullocki MEM-PR</th>
<th>P-value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05 ± 0.02^2</td>
<td>0.07 ± 0.03</td>
<td>0.02 ± 0.003</td>
<td>0.06 ± 0.01</td>
<td>0.5803</td>
</tr>
<tr>
<td>3</td>
<td>0.16 ± 0.04</td>
<td>0.15 ± 0.09</td>
<td>0.13 ± 0.02</td>
<td>0.7 ± 0.07</td>
<td>0.0251</td>
</tr>
<tr>
<td>5</td>
<td>$0.15 \pm 0.07^*$</td>
<td>0.93 ± 0.09</td>
<td>0.83 ± 0.35</td>
<td>0.68 ± 0.04</td>
<td>0.0397</td>
</tr>
<tr>
<td>7</td>
<td>0.35 ± 0.1</td>
<td>0.13 ± 0.02</td>
<td>$0.83 \pm 0.23^* $</td>
<td>0.13 ± 0.05</td>
<td>0.0308</td>
</tr>
<tr>
<td>9</td>
<td>0.32 ± 0.02</td>
<td>0.1 ± 0.06</td>
<td>$0.88 \pm 0.17^* $</td>
<td>1.17 ± 0.42</td>
<td>0.0378</td>
</tr>
</tbody>
</table>

1 Mean ± standard deviation of ten replicates expressed as nM of pyruvate produced per cell.

2 P-value among the groups (at each sampling period) evaluated at $p \geq 0.05$.

* Significant difference.

Table 3. *In vitro* production of lactate by pathogenic and nonpathogenic strains of Cryptobia salmositica and C. bullocki in medium with (MEM+PR) or without (MEM-PR) phenol red.

<table>
<thead>
<tr>
<th>Week</th>
<th>Pathogenic C. salmositica MEM+PR</th>
<th>Nonpathogenic C. salmositica MEM-PR</th>
<th>C. bullocki MEM+PR</th>
<th>C. bullocki MEM-PR</th>
<th>P-value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.9 ± 1.7^2</td>
<td>6.3 ± 2.46</td>
<td>10.5 ± 6.02</td>
<td>6.02 ± 1.41</td>
<td>0.6463</td>
</tr>
<tr>
<td>3</td>
<td>36.9 ± 4.28</td>
<td>16.0 ± 17.24</td>
<td>13.3 ± 2.31</td>
<td>15.6 ± 4.97</td>
<td>0.3921</td>
</tr>
<tr>
<td>5</td>
<td>16.7 ± 2.58</td>
<td>18.8 ± 8.16</td>
<td>15.4 ± 3.57</td>
<td>12.0 ± 3.41</td>
<td>0.2206</td>
</tr>
<tr>
<td>7</td>
<td>14.8 ± 3.49</td>
<td>26.1 ± 5.32</td>
<td>10.3 ± 1.75</td>
<td>17.55 ± 6.99</td>
<td>0.0735</td>
</tr>
<tr>
<td>9</td>
<td>$34.8 \pm 6.82^*$</td>
<td>21.9 ± 4.95</td>
<td>14.5 ± 1.93</td>
<td>11.0 ± 2.18</td>
<td>0.0233</td>
</tr>
<tr>
<td>11</td>
<td>4.3 ± 0.16</td>
<td>3.11 ± 1.82</td>
<td>3.71 ± 0.056</td>
<td>1.75 ± 0.42</td>
<td>0.0643</td>
</tr>
</tbody>
</table>

1 Mean ± standard deviation of ten replicates expressed as nM of lactate produced per cell.

2 P-value among the groups (at each sampling period) evaluated at $p \geq 0.05$.

* Significant difference.
limiting factors because the decline in parasite numbers in “old” cultures was not related to a change to an acidic environment. However, they were also sensitive to changes in pH and did not survive well in media without Hepes buffer (i.e. saline). Thus increasing the concentration of Hepes in the previous study increased available H⁺ and might have stabilised the pH, thus favouring enhanced parasite multiplication.

Acknowledgement. This study was supported by a grant from the National Science and Engineering Research Council of Canada (NSERC) to PTKW.

REFERENCES

