Folia Parasitologica, vol. 64 (2017)

Folia Parasitologica 64:016 (2017) | DOI: 10.14411/fp.2017.016

Inactivation of proteolytic enzymes by Eubothrium rugosum (Cestoda) from the gut of burbot Lota lota

Galina I. Izvekova, TatyanaV. Frolova, Evgeny I. Izvekov
I.D. Papanin Institute for Biology of Inland Waters, Borok, Russian Academy of Sciences, Russia

Parasitic organisms inhabiting the alimentary canal should permanently resist the destructive action of host digestive enzymes. The intestinal parasites were shown to produce specific protease inhibitors protecting them from proteolysis. However, little is known about this adaptive mechanism in cestodes so far, especially for the tapeworms dwelling inside the fish intestines. Here, we explored the ability to inactivate proteolytic enzymes in the fish tapeworm Eubothrium rugosum (Batsch, 1786) (Bothriocephalidea) parasitising the intestine of wild burbot, Lota lota (Linnaeus). The assays were conducted with different concentrations of commercial trypsin and homogenate of intestinal mucosa both being the sources of proteinases. The incubation of live E. rugosum in trypsin solutions of two different concentrations caused a significant decrease in the enzyme activity. The extent of activity reduction was dependent on trypsin concentration. At the same time, the inhibitory effect of the worm incubation medium turned out to be statistically insignificant. These findings suggest partial adsorption of the enzyme to the tegument surface, with its further inactivation. In contrast to the incubation medium, the worm extract suppressed over 80% of trypsin activity and nearly half of the proteolytic activity in the mucosa homogenate. Notably, the inhibitory activity of the tapeworms hardly depended on their size characteristics. Finally, the research has demonstrated secretion of proteinase inhibitor in E. rugosum, which appears to be essential for its survival in enzymatically hostile environment.

Keywords: helminths, fish, digestive enzymes, trypsin, protease inhibitors

Received: March 1, 2017; Accepted: April 10, 2017; Published online: May 9, 2017


References

  1. Alarcón F.J., Martínez T.F., Barranco P., Cabello T., Díaz M., Moyano F.J. 2002: Digestive proteases during development of larvae of red palm weevil, Rhynchophorus errugineus (Olivier, 1790) (Coleoptera: Curculionidae). Insect Biochem. Mol. Biol. 32: 265-274. Go to original source... Go to PubMed...
  2. Baig S., Damian R.T., Molinari J.L., Tato P., Morales-Montor J., Welch M., Talhouk J., Hashmeys R., White A.C. JR.: 2005. Purification and characterization of a metacestode cysteine proteinase from Taenia solium involved in the breakdown of human IgG. Parasitology 131: 411-416. Go to original source... Go to PubMed...
  3. Bosi G., Shinn A.P., Giari L., Simoni E., Pironi F., Dezfuli B.S. 2005: Changes in the neuromodulators of the diffuse endocrine system of the alimentary canal of farmed rainbow trout, Oncorhynchus mykiss (Walbaum), naturally infected with Eubothrium crassum (Cestoda). J. Fish Dis. 28: 703-711. Go to original source... Go to PubMed...
  4. Dubovskaya A.YA. 1973: [A study of proteolytic activity in some cestode species.] Parazitologiya 7: 154-159. (In Russian.)
  5. Dzik J.M. 2006: Molecules released by helminth parasites involved in host colonization. Acta Biochim. Pol. 53: 33-64. Go to PubMed...
  6. Eshel A., Lindner P., Smirnoff P., Newton S., Harpaz S. 1993: Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater. Comp. Biochem. Physiol. 106A: 621-634. Go to original source...
  7. Grasbergert B.L., Clore G.M., Gronenborn A.M. 1994: High-resolution structure of Ascaris trypsin inhibitor in solution: direct evidence for a pH-induced conformational transition in the reactive site. Structure 2: 669-678. Go to original source... Go to PubMed...
  8. Hawley J.H., Peanasky A.J. 1992: Ascaris suum: are trypsin inhibitors involved in species specificity of ascarid nematodes? Exp. Parasitol. 75: 112-118. Go to original source... Go to PubMed...
  9. Hwang J.H., Lee W.G., Na B.K., Lee H.W., Cho S.H., Kim T.S. 2009: Identification and characterization of a serine protease inhibitor of Paragonimus westermani. Parasitol. Res. 104: 495-501. Go to original source... Go to PubMed...
  10. Izvekova G.I., Frolova T.V. 2017: Proteolytic enzymes and their inhibitors in cestodes. Biol. Bull. Rev. 7: 150-159. Go to original source...
  11. Izvekova G.I., Frolova T.V., Izvekov E.I. 2017: Adsorption and inactivation of proteolytic enzymes by Triaenophorus nodulosus (Cestoda). Helminthologia 54: 3-10. Go to original source...
  12. Izvekova G.I., Kuperman B.I., Kuz'mina V.V. 1997: Digestion and digestive-transport surfaces in cestodes and their fish hosts. Comp. Biochem. Physiol. 118: 1165-1171. Go to original source...
  13. Izvekova G.I., Solovyev M.M., Kashinskaya E.N., Izvekov E.I. 2013: Variations in the activity of digestive enzymes along the intestine of the burbot Lota lota expressed by different methods. Fish. Physiol. Biochem. 39: 1181-1193. Go to original source... Go to PubMed...
  14. Jin X., Deng L., Li H., Zhang Z. , He Q., Yang C., Jiang H., Zhu X.-Q., Peng L. 2011: Identification and characterization of a serine protease inhibitor with two trypsin inhibitor-like domains from the human hookworm Ancylostoma duodenale. Parasitol. Res. 108: 287-295. Go to original source... Go to PubMed...
  15. Kang J.-M., Ju H.-L., Lee K.H., Kim T.-S., Pak J.H., Sohn W.-M., Na B.-K. 2014: Identification and characterization of the second cysteine protease inhibitor of Clonorchis sinensis (CsStefin‑2). Parasitol. Res. 113: 47-58. Go to original source... Go to PubMed...
  16. Klimenko V., Ķĕniņa V. 1971: [On the influence of phylogeny and ecology on some biochemical mechanisms of helminth adaptation.] Latvijas Zinatnu Akademijas Vestis. 11: 93-96. (In Russian.)
  17. Knox D.P. 2007: Proteinase inhibitors and helminth parasite infection. Parasite Immunol. 29: 57-71. Go to original source... Go to PubMed...
  18. Kumar S., Garcia-Carreño F.L., Chakrabarti R., Toro M.A.N., Córdova-Murueta J.H. 2007: Digestive proteases of three carps Catla catla, Labeo rohita and Hypophthalmichthys molitrix: partial characterization and protein hydrolysis efficiency. Aquaculture Nutr. 13: 381-388. Go to original source...
  19. Li A.H., Moon S.-U., Park Y.-K., Na B.-K., Hwang M.-G., Oh C.-M., Cho S.-H., Kong Y., Kim T.-S., Chung P.-R. 2006. Identification and characterization of a cathepsin L‑like cysteine protease from Taenia solium metacestode. Vet. Parasitol. 141: 251-259. Go to original source... Go to PubMed...
  20. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275. Go to PubMed...
  21. Matskási I. 1984: The effect of Bothriocephalus acheilognati infection on the protease and α‑amylase activity in the gut of carp fry. Symp. Biol. Hung. 23: 119-125.
  22. Matskási I., Juhász S. 1977: Ligula intestinalis (L., 1758): investigation on plerocercoids and adults for protease and protease inhibitor activities. Parasitol. Hung. 10: 51-60.
  23. Mitchell C.G. 1993: Eubothrium. Aquacult. Inf. Ser. 14: 1-4.
  24. Molehin A.J., Gobert G.N., Mcmanus D.P. 2012: Serine protease inhibitors of parasitic helminthes. Parasitology 139: 681-695. Go to original source... Go to PubMed...
  25. Morris S.R., Sakanari J.A. 1994: Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J. Biol. Chem. 269: 27650-27656. Go to PubMed...
  26. Natalia Y., Hashim R., Ali A., Chong A. 2004: Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture 233: 305-320. Go to original source...
  27. Oaks J., Lumsden R.D. 1971: Cytochemical studies on the absorptive surfaces of cestodes. V. Incorporation of carbohydrate containing macromolecules into tegument membranes. J. Parasitol. 57: 1256-1268. Go to original source... Go to PubMed...
  28. Pappas P.W. 1980: Enzyme interactions at the host-parasite interface. In: C.B. Cook, P.W. Pappas and E.D. Rudolph (Eds.), Cellular Interactions in Symbiosis and Parasitism. The Ohio State University Press, Columbus, pp. 145-172.
  29. Pappas P.W. 1987: Hymenolepis diminuta: interactions of the isolated brush border membrane with proteolytic enzymes. Exp. Parasitol. 64: 38-47. Go to original source... Go to PubMed...
  30. Pappas P.W., Read C.P. 1972a: Inactivation of α- and β-chymotrypsin by intact Hymenolepis diminuta (Cestoda). Biol. Bull. 143: 605-616. Go to original source... Go to PubMed...
  31. Pappas P.W., Read C.P. 1972b: Trypsin inactivation by intact Hymenolepis diminuta. J. Parasitol. 58: 864-871. Go to original source... Go to PubMed...
  32. Pappas P.W., Uglem G.L. 1990: Hymenolepis diminuta (Cestoda) liberates an inhibitor of proteolytic enzymes during in vitro incubation. Parasitology 101: 455-464. Go to original source... Go to PubMed...
  33. Rawlings N.D., Tolle D.P., Barrett A.J. 2004: Evolutionary families of peptidase inhibitors. Biochem. J. 378: 705-716. Go to original source... Go to PubMed...
  34. Reichenbach-Klinke H.-H., Reichenbach-Klinke K-E. 1970: Enzymuntersuchungen an Fischen. II. Trypsin- und α-amylase-Inhibitoren. Arch. Fischereiwiss. 21: 72-76.
  35. Saksvik M., Nilsen F., Nylund A., Berland B. 2001: Effect of marine Eubothrium sp. (Cestoda: Pseudophyllidea) on the growth of Atlantic salmon, Salmo salar L. J. Fish Dis. 24: 111-119. Go to original source...
  36. Soprunov F.F. 1987: [Molecular Basis of Parasitism.] Moscow, Nauka, 224 pp. (In Russian.)
  37. Stapanian M.A., Myrick C.A. 2015: Ecology, culture, and management of Burbot: an introduction. Hydrobiologia. 757: 1-2. Go to original source...
  38. Zang X., Maizels R.M. 2001: Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends Biochem. Sci. 26: 191-197. Go to original source... Go to PubMed...