

SHORT COMMUNICATION

PASSALOGLYPHUS ROSICKYI GEN. N. SP. N. (ACARI, ACARIDAE) FROM THE BEETLE PASSALUS SP.*

S. MAHUNKA and K. SAMŠIŇÁK

Zoology Department of the Hungarian National Museum, Budapest and Institute of Parasitology, Czechoslovak Academy of Sciences, Prague

Abstract. A description is given of the mite *Passaloglyphus rosickyi* gen. n. sp. n. of the family Acaridae found on the beetle *Passalus* sp. in Brazil.

The material of edaphic fauna collected by the Second Hungarian expedition to South America included one specimen of *Passalus* sp. (Coleoptera) infested with a large number of minute hypopi, both on the body surface and beneath elytra. The mite does not belong to any hitherto known genera or species.

Passaloglyphus gen. n.

Body elongated, egg-shaped, almost spindle-like, posteriorly considerably tapered. Scapular setae very much differentiated in length and width. Coxal attachment organs well developed. Suckers on the sucker-bearing plate in three rows with 2—2—4 each. Two pairs of fore legs considerably longer and stouter than hind legs.

Typus generis: *Passaloglyphus rosickyi* sp. n.

Note: In body shape and form of sucker-bearing plate the genus shows a striking homology to hypopi of the genus *Kanoetus* Samšiňák, 1966 (Anoetidae), which is monotypic and occurs on beetles of the genus *Passalus*.

Passaloglyphus rosickyi sp. n.

Figs. 1, 2

Dimensions: Length 229—246 (holotype 229) μm , width 126—141 (holotype 126 μm). **Habitus:** body egg-shaped, dorsal side of body strewn with regular round depressions. **Dorsum (Fig. 1 A):** Setae on propodosomal shield are considerably different: *sce* are stout and long (47 μm), shifted from their usual position in the centre of shield to its side edge; *sci* very short (about 4 μm) and placed close to *sce*, at a distance hardly as long as their length from insertion of the latter. Likewise the vertical setae are very short, placed at the very tip of rostrum. Hysterosomal setae short, about the same as *sci*. Their arrangement shows no peculiarities.

Venter (Fig. 1 B): Gnathosoma relatively stout (13 μm) and short. Basic segment almost as long as wide, final setae blunt, only 25 μm long. Epimeres I joined in the

* The Scientific Results of the Hungarian Soil Zoological Expeditions to South America (Second Expedition 1966—67) headed by Prof. Dr. J. Balogh (other participants: Dr. S. Mahunka and Dr. A. Zicsi). Communication No. 20.

form Y in sternum which terminates at about three quarter length of propodosoma. Epimeres II connect with epimerites II, which frame the side edge of sternal shield and its widely rounded posterior corners as well. Epimeres III arch-like bent, not reaching the middle of body, join epimeres IV and only past this conjunction the ventrum proper begins, stretching as far as genital orifice. On coxae I and III tiny suckers are in their usual position. In the conjunction of epimeres III and IV there is a seta typical of all hypopi of the family Acaridae. A pair of genital suckers situated closely to genital orifice and immediately behind them is a pair of genital setae somewhat shifted towards the middle of body. Sucker-bearing plate is bell-like, short, bearing eight suckers, of which the central pair is the biggest and has two "nuclei".

The last two pairs of suckers are lined at the end of plate and their discs are turned backwards. A pair of long terminal setae, belonging to the dorsal shield, is placed as usual on the upturned edge of hysterosomal shield beyond the sucker-bearing plate and measures 17 μm .

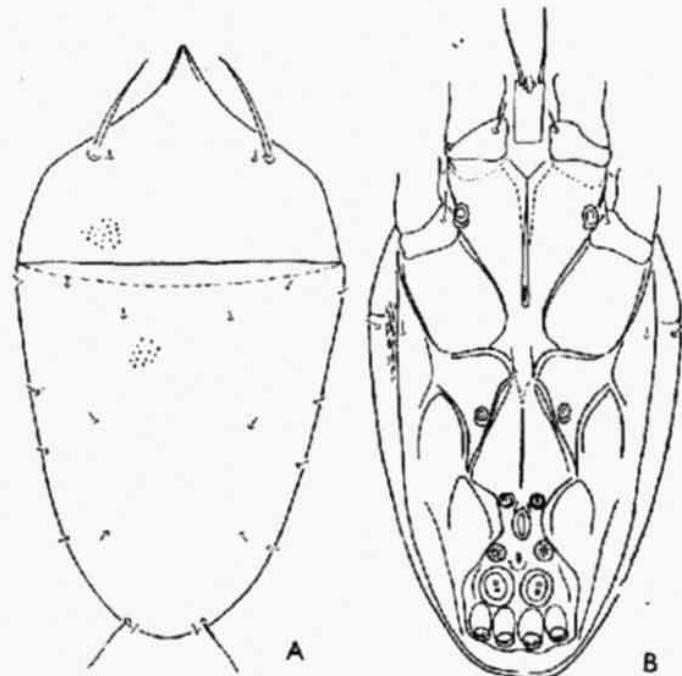


Fig. 1. A. *Passaloglyphus rosickyi* gen. n. sp. n. Hypopus. Idiosoma from above. B. *Passaloglyphus rosickyi* gen. n. sp. n. Hypopus. Idiosoma from below.

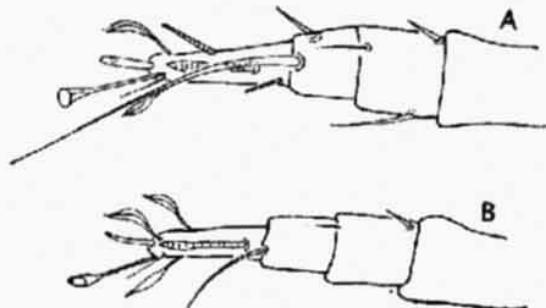


Fig. 2. A, B. *Passaloglyphus rosickyi* gen. n. sp. n. Hypopus. Legs I and II.

Legs (Fig. 2 A—B): Shape and position of legs correspond to usual features of the family Acaridae. The first two pairs are considerably longer and stouter than the hind legs. ω_1 (Fig. 2 A) of leg I is long (22 μm), slightly swollen at end. At the end of tarsus I one attachment seta and two lance-like expanded setae. Apical setae of tibia I with very few thorns. Two pairs of hind legs directed backwards.

Types: Holotypus (hypopus): No. 359. Brazilia Manaus, November 13, 1966 on *Passalus* sp., lgt J. Balogh, S. Mahunka, A. Zicsi. Holotype and 25 paratypes in the collection of the Hungarian Natural History Museum, Budapest, 5 paratypes in the collections of the Institute of Parasitology, Czechoslovak Academy of Sciences, Prague.

The new species is dedicated to Prof. Dr. B. Rosicky, D.Sc., Director of the Institute of Parasitology, Czechoslovak Academy of Sciences, Prague on the occasion of his fiftieth birthday. The description of the mite was made during the study visit of Dr. S. Mahunka to this Institute.

PASSALOGLYPHUS ROSICKYI GEN. N. SP. N. (ACARI, ACARIDAE)
ПАРАЗИТ ПРУЮЩИЙ НА ЖУКЕ *PASSALUS* SP.

С. Махунка и К. Самшиняк

Резюме. Дано описание клеща *Passaloglyphus rosickyi* gen. n. sp. n. семейства Acaridae, паразитирующего на жуке *Passalus* sp. в Бразилии.

REFERENCES

SAMŠIŇÁK K., Zwei interessante, auf Insekten lebende Hypopi (Acari, Acaroidea). Zool. Anz. 176: 124—127, 1966.
ZAKHvatkin A. A., Tyroglyphoid mites. Fauna SSSR VI, 1. Moskva—Leningrad, 1941.
(In Russian.)

Received 26 August 1971.

S. M., Zoology Dept. of the
Hungarian National Museum,
Budapest, Hungary

J. Boch, R. Supperer, „Veterinärmedizinische Parasitologie”.
Paul Parey Verlag, Berlin 1971, p. p. 408.

The book has been written on the basis of long lasting theoretical and practical experiences of its two authors. It lists the most important parasites causing infection in animals of economic importance such as ruminants, horses, swine and fowl, and also in carnivores and laboratory animals. The descriptions of parasites are accompanied by numerous photographs. A comprehensive account is given of clinical signs, diagnostic methods, pathology and prevention of the various infections. Part I—general aspects—deals with systematics, epizootiology, pathogenesis, host-parasite relationship, and contains a section discussing the principles of treatment and prevention, and various examination methods. The book covers a wide range of parasitic infections.

It discusses protozoan infections, helminthoses, ectoparasites and Acanthocephala.

The publication will be of great help to all practicing veterinarians and veterinary students, because it gives a comprehensive account of the various diagnostic and therapeutic methods and contains notes on the bionomy and epidemiology of some of the more important parasites. Its style is clear and concise. Pertinent literature citations are listed at the end of each chapter. Unfortunately, the authors omitted a number of citations which are directly related to the subject under consideration.

Dr. B. Erhardová-Kotrlá, D.Sc.