

THE ROLE OF MAMMALS IN THE CIRCULATION OF ŤAHYŇA VIRUS*

V. BÁRDOŠ

Institute of Parasitology, Czechoslovak Academy of Sciences, Prague

Abstract. An analysis is given of the role of mammals in the circulation of Ťahyňa virus on the basis of the results obtained by Czechoslovak, Austrian and Hungarian virologists.

Ťahyňa arbovirus, the first European representative of the California group, was isolated in 1958 in Czechoslovakia (Bárdos and Danielová 1959). In the years following the isolation great attention was paid to the elucidation of its medical importance and natural cycle. Results of studies undertaken to the elucidation of the medical importance were already summarized and published (Bárdos 1974). In the present paper the results of studies concerning the role of mammals in the circulation of Ťahyňa virus are evaluated.

The initial stage of the studies concerning the role of vertebrates in the circulation of Ťahyňa virus was influenced by the facts published on the important role of birds in the natural cycle of most mosquito-borne viruses. That is why attention was paid to birds in the beginning of these studies. The results of experimental works have shown, however, that birds of Central Europe are resistant to Ťahyňa virus infection (Šimková 1962).

The attention was focused therefore on mammals living in natural foci of Ťahyňa virus infection. Virus neutralization and haemagglutination tests were used for the detection of antibodies in the sera of wild and domestic mammals. In several European countries serological surveys were undertaken. In this paper, however, the results obtained by Czechoslovak, Austrian and Hungarian virologists only are summarized since there are no great differences in the biocenosis of the natural foci of Ťahyňa virus infections in these three countries. Table I shows that the highest percentage i.e. 36.1% of virus neutralizing antibodies were detected in the hare. The next is the hedgehog with 3.1%. From Rodentia only 1 specimen of *Citellus citellus* out of 98 and a specimen of *Microtus arvalis* out of 83 tested were positive. The number of tested specimens from foxes, wild boar and roe-deer is too low to draw any conclusion from it.

These results justify the attention paid to the hare and hedgehog and it was decided therefore to elucidate experimentally their possible role in the natural cycle of Ťahyňa virus. Experimental studies were started with the extraneurally passaged strain „236“

*) Presented at the First International Theriological Congress, Moscow, June 6-12, 1974

of Čáhyňa virus (Bárdos et al. 1961). It was previously shown in experimentally infected laboratory mammals that this strain is more suitable for viraemia studies than the neuroadapted (i.e. passaged) variant of the same strain (Bárdos 1963). Details are seen in Table 2. The titer of virus in the blood of white mice, experimentally infected with the extraneuronal variant, was higher than with the neuroadapted one and lasted longer. These experiments also revealed that only young mice of 8—9 g and younger react to experimental infection with viraemia and the formation of antibodies. In older mice (20 g) only formation of antibodies was detected.

Table 1. Čáhyňa virus neutralizing antibodies in wild mammals of Central Europe

Order	Species	No. of posit./samples	% posit.	Ref.
Insectivora	<i>Erinaceus roumanicus</i>	7/164	3.1	3, 22, 38
	<i>Sorex araneus</i>	0/13		4
	<i>Crocidura leucodon</i>	0/15		
	<i>Crocidura suaveolens</i>	0/2		
Chiroptera	<i>Myotis myotis</i>	0/30	39	
	<i>Nyctalus noctula</i>	0/112		4
	<i>Pipistrellus nathusii</i>	0/1		
	<i>Plecotus austriacus</i>	0/1		
Lagomorpha	<i>Lepus europaeus</i>	163/451	36.1	4, 6, 22, 40
	<i>Citellus citellus</i>			4
	<i>Mus musculus</i>			4, 22
	<i>Apodemus flavicollis</i>			6, 22
Rodentia	<i>Apodemus sylvaticus</i>	0/42	4	
	<i>Apodemus micropus</i>			
	<i>Cricetus cricetus</i>			
	<i>Clethrionomys glareolus</i>			6, 22
Carnivora	<i>Pitymys subterraneus</i>	0/2	4	
	<i>Microtus arvalis</i>			
	<i>Vulpes vulpes</i>			4, 22
	<i>Sus scrofa</i>			4
Artiodactyla	<i>Cervus elaphus</i>	0/1	22	
	<i>Capreolus capreolus</i>			
				4, 6, 22

Table 2. Viraemia in laboratory mammals experimentally infected with Čáhyňa virus

Species	Weight in g	Strain e or n*	Passage history (x th)	Inoculum s.c. $\log_{10} LD_{50}$ †	Viraemia		Ref.
					in days	max. titer in $\log_{10} LD_{50}$	
<i>Mus musculus</i> v. <i>alba</i>	20.0	236e	7	4.5	0	0††	8
	8—9.0	236e	7	4.5	4	2.5	
	5.1	236e	7	1.2	6	3.5	
	4.9	236n	9	2.2	5	1.5	
	7.0	236n	9	2.3**	4	0.5	
	7.4	236e	7	2.0**	4	2.6	
	7.5	236n	9	3.2**	3	2.2	
	7.0	236e	7	3.7**	5	2.0	
<i>Mesocricetus auratus</i>	80.0	236e	4—7	8 × 1.0	0	0	37
	80.0	236e	4—7	2.7—3 × 5.3	4—5	2.2—3.5	

† according to i.e. control titration in young mice (0.03), †† tested in 2—3 day-old baby mice (i.e./0.01 ml), *e extraneuronal, *n neuroadapted, **i.e. inoculation. The same symbols apply to Tables 3 and 5.

These findings influenced the approach to the study of experimental infections in wild and domestic mammals in the future. The main points of this approach were formulated as early as 1960 (Bárdos 1962). Table 3 shows that the young hares weighing 400 g react to an experimental infection with a viraemia of 3—5 days duration with a titer of 2.5—3.2 log₁₀LD₅₀ i.e. (0.03 ml) and with antibodies formation. This viraemia can be considered sufficiently high and long to ensure an infection of the biological vector *Aedes vexans* (Daniclová 1966). Thus the young hare may be considered as a host and probable amplifier of Tahyňa virus in nature awaiting still the decisive proof of his amplifier role, i.e. the transmission of Tahyňa virus from a viraemic hare to *A. vexans* and the isolation of Tahyňa virus from the blood of the naturally infected hare.

The possible role of the hedgehogs in the natural cycle of Tahyňa virus was theoretically very interesting since hedgehogs are hibernating animals. In experimentally infected hedgehogs a high level viraemia (3.0 log₁₀LD₅₀ i.e./0.03 ml) of 6—8 days duration with antibody formation was observed (Table 3). In experiments where hedgehogs were forced to an immediate experimental hibernation after their infection, Tahyňa virus could be recovered from their blood after 140 days of hibernation (Šimková 1966). Tahyňa virus could not be isolated from the blood of experimentally infected hedgehogs hibernating in nature after their awakening (Málková et al. 1969). Naturally hibernating hedgehogs obviously do not ensure the survival of Tahyňa virus over the winter months and their infrequent infection in natural conditions and their low abundance (Aspöck and Kunz 1970) indicate that they cannot be included among important host and probable amplifiers of Tahyňa virus in nature.

The results of experimental infection of *Citellus citellus* and *Glis glis* (Table 3.) are interesting and the level of viraemia and its duration is considered to be sufficient to

Table 3. Viraemia in wild mammals experimentally infected with Tahyňa virus

Species	Age or weight	Strain e or n ⁺	Passage history (x th)	Inoculum s.e. log ₁₀ LD ₅₀ †	Viraemia		Ref.
					in days	max. titer in log ₁₀ LD ₅₀ †	
<i>Erinaceus roumanicus</i>	500 g	236 e	6—7	0.07—0.8	0·	0	38
	500 g	236 e	6—7	2×1.0—2×5.0	6	3.0	
	243—435 g	236 e	9	4.0	8	>2.5††	
<i>Talpa europaea</i>	?	236 e	9	?	2	TR.††	28
<i>Myotis myotis</i>	juv.	181 n	?	4.0	0	0††	27
<i>Nyctalus noctula</i>	?	236 e	7	1.5—5.5	0	0	39
<i>Lepus europaeus</i>							
	400 g	236 e	4—7	8×1.0	3	>2.4	37
	400 g	236 e	4—7	4.6—5.8	3—5	2.5—3.2	
<i>Sciurus vulgaris</i>	?	181 n	27	7×2.6	0	0	34
<i>Citellus citellus</i>	3 mo.—1 year	236 e	9	4.0—2×6.2	4—5	2.4—>3.5††	28
<i>Glis glis</i>	110—150 g	236 e	9	6×3.3—5×4.7	4.5	1.7—>3.0††	28
<i>Vulpes vulpes</i>	10 weeks	13342n	2	5×4.0††	1··	0.2††	2
	10 weeks	236 e	?	4.0††	2—3	0.4††	
		Cul.					
<i>Meles meles</i>	10 weeks	13342n	2	5×4.0††	2	1.4††	2
	10 weeks	236 e	?	4.0††	2	TR.††	

· in 1 out of 11 viraemia detected, ·· in 1 out of 2 viraemia detected, TR. = traces.

ensure an infection of *A. vexans* but in wild *Citellus citellus* antibodies were only sporadically detected (Table 1). Data on the frequency of the natural infection in *Glis glis*, are not available.

In wild mammals belonging to the order of Carnivora and Artiodactyla, experimental infection with properly chosen strains of Čáhyňa virus was undertaken only in the species *Vulpes vulpes* and *Meles meles* (Table 3). A low level viraemia of 2 days duration with formation of specific antibodies was detected in both species. Only the experiments simulating natural conditions may answer the question if the detected viraemia is sufficient to ensure infection of *A. vexans*.

Now let us consider the experiments in mammals with negative results when viraemia was not detected after experimental infection. Bats *Nyctalus noctula* can be excluded from the list of hosts since neither antibodies in specimens caught in nature nor viraemia were detected after their experimental infection with the extraneuronal strain „236“. In the case of wild young *Myotis myotis* no antibodies were detected. Experimental infection of these species provoked no viraemia but formation of antibodies only. No definite conclusion can be drawn from these experiments since a neuroadapted strain was used (Table 3).

Wild *Sciurus vulgaris* has not been up to now tested for Čáhyňa virus antibodies. The experimental infection was done with a high passaged (27th) neuroadapted strain. No viraemia but formation of antibodies only were detected. Conclusions cannot be drawn likewise from the results of these studies. The role of these species in the natural cycle of Čáhyňa virus ought to be investigated in the future.

Table 4. Čáhyňa virus antibodies in domestic animals of Central Europe

Order	Species	No. of posit./samples	% posit.	Test	Ref.
Lagomorpha	<i>Oryctolagus cuniculus</i>	17/181	9.0	NT	40
Carnivora	<i>Canis familiaris</i>	3/9	?	NT	12
	<i>Felis domestica</i>	0/2	?	NT	
Artiodactyla	<i>Sus scrofa</i>	93/195	47.6	NT	4, 12, 22
	<i>Sus scrofa</i>	60/109	55.0	HI	25
	<i>Bos taurus</i>	97/895	10.8	NT	5, 12, 22
	<i>Bos taurus</i>	68/624	10.8	HT	25, 32, 33
Perissodactyla	<i>Equus caballus</i>	65/103	63.1	NT	4, 12, 25
	<i>Equus caballus</i>	21/61	34.0	HI	

A critical approach to the results of experimental infections with the high passaged neuroadapted strain has been justified not only by the facts mentioned above (Table 2) but also by the results of experimental studies published. As early as 1965 it was anticipated that the invasiveness of the neuroadapted strain of Čáhyňa virus is minimal (Bárdoš 1965b). This fact was later clearly demonstrated in experimentally infected suckling and young white mice (Danielová et al. 1970, Wallnerová 1973).

On the basis of the results obtained in serological surveys and experimental infections it can be concluded that the young hare occupies the first place on the list of wild mammal hosts of Čáhyňa virus considered as a probable amplifier of Čáhyňa virus in nature. Placing the hare on the top of the list is justified since this mammal meets the requirements of the criteria published earlier (Bárdoš 1965). The hare is a very numerous wild mammal in Central European biotopes of Čáhyňa virus infections. There are about 120—130 hares per 100 hectares. They have a numerous progeny 3—4 times during the

summer months. Since only 36.1% of adult hares possess antibodies, there is a large annual population of non-immune young hares in nature. After birth the young are lying on the ground freely exposed to mosquito bites. Being intensively hunted 80% of the hare population consists of animals below 1 year of age (Mohr 1954). All other species of wild mammals under consideration according to the results of serological surveys and experimental infections are of less importance, since they are less numerous and have a less numerous progeny.

Besides wild mammals, domestic animals are also frequently attacked by mosquitoes. The results of serological surveys are presented in Table 4. The highest percentage of antibodies was detected in horses (63.1 resp. 34.0%) and in pigs (47.6 resp. 55.0%). In cattle and domestic rabbits the percentage was lower (10.8 resp. 9.0%).

Table 5. Viraemia in domestic mammals experimentally infected with Čáhyňa virus

Species	Age or weight	Strain e or n*	Passage history (x th)	Inoculum s.c. log. ₁₀ LD ₅₀ †	Viraemia		Ref.
					in days	max. titer in log. ₁₀ LD ₅₀	
<i>Oryctolagus cuniculus</i>	400 g	236 e	4—7	4 × 1.0	3+	>3.4	37
	400 g	236 n	4—7	2.7—6 × 4.0	3—4	2.9	
	1.5—2.2 kg	181 n	2	3 × 3.6—5 × 3.0††	3—4	TR.††	30
<i>Sus scrofa</i>	1.8—2.0 kg	236 e	11	2.5—4.5	4—5	2.5	6, 14, 17
	3.4—5.8 kg	236 e	11	3.5	3	TR.†††	
	27.0—30.0 kg	236 e	11	6.4!	3	TR.††	
<i>Bos taurus</i>	2—5 days	236 e	11	7.4	3—4	TR.††	
	3—17 days	236 e	7	4.1	4	TR.††	6, 13
	1 year	236 e	?	2.5—3.5	3—5	1.5	6
<i>Equus caballus</i>	3 years	236 e	?	4.7	4	TR.††	
	92 n	92 n	?	5.9	0	0††	

* in 3 out of 4 viraemia detected, ! intracutaneous inoculation, †† in 2 out of 3 viraemia detected; TR. = traces.

Table 6. Čáhyňa virus neutralizing antibodies and viraemia in „sentinel“ rabbits

Country	No. detected reactors/exposed	% reactors	Viraemia detected in	Viraemia detected in reactors in %	Ref.
Czechoslovakia	4/22		1		21, 26
USSR	4/20		0		18
Austria	25/91		2		1
Total	33/133	24.8	3	9.0	

The results of experimental infections with the extraneurial strain "236" have demonstrated that the highest viraemia is detectable in suckling pigs weighing 1.8-2.0 kg (Table 5). A low level viraemia was also detected in 3-17 day-old foals. On the basis of these results of experimental infections all above mentioned species should be considered as hosts and probable amplifiers of Čáhyňa virus. More experiments should be undertaken, however, to prove that viraemia in pigs and foals is sufficient to ensure the infection of mosquitoes and further attempts should be made to isolate Čáhyňa virus from the blood of the naturally infected pigs and foals.

Different, however, is the situation with the domestic rabbits. Table 6. shows that "sentinel" rabbits are frequently infected if exposed in natural conditions to mosquito bites (24.8 %) thus approaching almost the frequency of infections in wild hare. And moreover, it is also notable that Tahyňa virus was isolated from the blood of "sentinel" rabbits. Preparing the list of priorities among domestic animals in regard to their role as host-amplifiers of Tahyňa virus it seems necessary to take into consideration the following facts. In spite of the evidence that rabbits react to experimental infections with a satisfactory viraemia and that Tahyňa virus was isolated from the blood of naturally infected rabbits (thus they can be labeled as host-amplifiers), they are rarely infected in natural conditions when housed in cages protected against mosquitoes with a wire netting which prevents the access of mosquitoes.

In Central European conditions pigs might play an important role as hosts and supplementary amplifiers of Tahyňa virus, since numerous large breeding pigsties are built with thousands of suckling pigs annually. In spite of the anticipated large percentage of suckling pigs with maternal antibodies there are many others without these antibodies which can serve as supplementary amplifiers for Tahyňa virus.

Foals are much less numerous in Central European conditions and since in half of them maternal antibodies can be anticipated their importance will lag far behind that of suckling pigs.

Summarizing the facts already gathered it may be stated that in conditions of Central Europe the young hares and suckling pigs should be considered as the most important host and probable amplifiers of Tahyňa virus in nature.

There is plenty of work still to be done for the reasons mentioned above. Conditions typical of Central European biotopes cannot be applied to other countries of Europe, Asia and Africa, since studies done in other areas, for instance in France, Uzbekistan (U.S.S.R.) and Finland indicate that the host-amplifiers of Tahyňa virus (resp. Inkoo virus) might be other mammals (Hannoun et al. 1969, Yakubov et al. 1971, Brummer-Korvenkontio 1973).

РОЛЬ МЛЕКОПИТАЮЩИХ В ЦИРКУЛЯЦИИ ВИРУСА ТЯГИНИЯ

В. Бардов

Резюме. Дан анализ роли млекопитающих в циркуляции вируса Тягиня на основе результатов полученных чехословацкими, австрийскими и венгерскими вирусологами.

REFERENCES

ASPÖCK H., GRAEFE G., KUNZ C., Untersuchungen über die Periodizität des Auftretens von Tahyňa und Čalovo Virus. Zbl. Bakt. I. Abt. A. 217: 431—440, 1971. (1)
—, HOFMANN H., Der Verlauf der experimentellen Infektion von Fuchs und Dachs mit Tahyňa und Čalovo Virus. Zbl. Bakt. I. Abt. A. 217: 148—151, 1971. (2)
—, KUNZ C., Felduntersuchungen über die Bedeutung des Igels (*Erinaceus europaeus roumanicus* Barret-Hamilton) im Zyklus des Tahyňa Virus. Zbl. Bakt. I. Abt. A. 213: 305—310, 1970. (3)
—, —, Antikörper gegen Tahyňa und Čalovo Virus in wildlebenden und domestizierten Säugetieren im östlichen Neusiedlersee Gebiet (Ost Österreich). Zbl. Bakt. I. Abt. A. 216: 435—440, 1971 a. (4)
—, —, Untersuchungen über die Bedeutung des Haustrindes für die Zirkulation des Tahyňa und Čalovo Virus. Zbl. Bakt. I. Abt. A. 218: 18—23, 1971 b. (5)

BÁRDOŠ V., On the ecology of arboviruses in Czechoslovakia. DrSc. Thesis: Institute of Microbiology, Czechoslovak Acad. Sci. Praha 1961. (Publ. House Slovak Acad. Sci. Bratislava 1965.) (6)

—, Discussion. In: Libiková H. (Ed.), Biology of Viruses of the Tick-borne Encephalitis Complex, Publ. House Czechoslovak Acad. Sci., Praha: 380, 1962. (7)

—, K patogenéze experimentálnej infekcie bielej myši vyvolanej virusom Čahyňa. Brat. lek. Listy. 43/II, 65—71, 1963. (8)

—, On the ecological problems of Čahyňa and Čalovo viruses. In: Rosický B. and Heyberger K. (Ed.), Theor. Quest. Nat. Foci Dis., Publ. House Czechoslovak Acad. Sci. Praha: 411—422, 1965 a. (9)

—, Čahyňa virus in experimentally infected white mice. Acta virol. 9: 358—366, 1965 b. (10)

—, Recent state of knowledge of Čahyňa virus infections. Folia parasit. (Praha) 21: 1—10, 1974. (11)

—, ADAMCOVÁ J., Protilátky neutralizujúce arbor virus Čahyňa v sŕach domácich zvierat na Slovensku. Vet. čas. 9: 349—355, 1960. (12)

—, ČUPKOVÁ E., JAKUBÍK J., Čahyňa virus in foals. Acta virol. 9: 555, 1965. (13)

—, —, —, Determination of Čahyňa virus concentration threshold producing viraemia in suckling pigs. Acta virol. 10: 55—61, 1966. (14)

—, —, ŠEFČOVIČOVÁ L., The Čahyňa virus II. Characteristics and some biological properties and preliminary immunological classification. Acta virol. 5: 93—100, 1961. (15)

—, DANIELOVÁ V., The Čahyňa virus. A virus isolated from mosquitoes in Czechoslovakia. J. Hyg. Epidemiol. Immunol. (Praha) 3: 264—276, 1959. (16)

—, JAKUBÍK J., Experimental infection in pigs with Čahyňa virus. Acta virol. 5: 228—231, 1961. (17)

BEREZIN V. V., CHUMAKOV M. P., SEMENOV B. F., RESHETNIKOV J. A., HANNOUN C., KORNIU B., MOUCHET J., (Investigation of the ecology of mosquito-borne arboviruses by using sentinel animals in the Volga Delta). Vopr. virusol. 16: 739—745, 1971. (In Russian.) (18)

BRUMMER—KORVENKONTIO M., Arboviruses in Finland. 5. Serological survey of antibodies against Inkoo virus (California group) in human, cow, reindeer and wildlife sera. Amer. J. Trop. Med. Hyg. 22: 654—661, 1973. (19)

DANIELOVÁ V., Quantitative relationships of Čahyňa virus and the mosquito *Aedes vexans*. Acta virol. 10: 62—65, 1966. (20)

—, To the seasonal occurrence of the virus Čahyňa. Folia parasit. (Praha) 19: 189—192, 1972. (21)

—, MARHOUL Z., Výskyt protilátek proti některým arbovirům u lidí, domácích a volně žijících zvířat v přírodním ohníšku virus Čahyňa na jižní Moravě. Čs. epidem. 17: 155—161, 1968. (22)

—, MINÁŘ J., RYBA J., Isolation of Čahyňa virus from mosquitoes *Culiseta annulata* (Schr. 1976). Folia parasit. (Praha) 17: 281—284, 1970. (23)

HANNOUN C., Discussion. In: Bárdoš et al. (Ed.) Arboviruses of the California Complex and Bunyamwera Group. Publ. House Slovak. Acad. Sci. Bratislava: 160—161, 1969. (24)

KOLMAN J. M., Serologic examination of some domestic animals from South Moravia on the presence of antibodies to selected arboviruses of the A, B, California and Bunyamwera groups. Folia parasit. (Praha) 20: 353—360, 1973. (25)

—, DANIELOVÁ V., MALKOVÁ D., SME-TANA A., The laboratory rabbit (*Oryctolagus cuniculus* L. var. *domestica*) as indicator of Čahyňa virus in nature. J. Hyg. Epid. Microbiol. Immunol. (Praha) 10: 246—253, 1966. (26)

—, MARHOUL Z., MÁLKOVÁ D., Experimental infection of the bat *Myotis myotis* Borkhausen with Čahyňa virus. J. Hyg. Epid. Microbiol. Immunol. (Praha) 11: 125—126, 1967. (27)

MÁLKOVÁ D., The development of viraemia and neutralizing antibodies in the European suslik, fat dormouse and common mole, experimentally infected with the virus Čahyňa. Folia parasit. (Praha) 17: 85—88, 1970. (28)

—, HODKOVÁ Z., CHATURVEDI R., Overwintering of virus Čahyňa in hedgehogs kept under natural conditions. Folia parasit. (Praha) 16: 245—254, 1969. (29)

—, MARHOUL Z., Viraemia and antibody formation in rabbits, experimentally infected with Čahyňa virus. In: Bárdoš et al. (Ed.) Arboviruses of the California Complex and the Bunyamwera Group. Publ. House Slovak Acad. Sci. Bratislava: 255—259, 1969. (30)

MOHR E., Die freilebenden Nagetiere Deutschlands und der Nachbarländer. Jena, 1954. (31)

MOLNÁR E., KUBINYI L., KUBASZOVÁ T., SZTANKAY M., Data on the occurrence of some arboviruses in Hungary. In: European Association Poliomyelitis and other virus diseases. III. Symposium, Helsinki. Des Presses des Publications Acta Medica Belgica: 138—143, 1971. (32)

SEKEYOVÁ M., GREŠÍKOVÁ M., Haemagglutination-inhibiting antibodies against arboviruses in cattle sera. J. Hyg. Epid. Microbiol. Immunol. (Praha) 11: 417—421, 1967. (33)

SMETANA A., MÁLKOVÁ D., MARHOUL Z., Čahyňa virus in squirrels *Sciurus vulgaris* L. J. Hyg. Epid. Microbiol. Immunol. (Praha) 10: 523—524, 1966. (34)

ŠIMKOVÁ A., Čahyňa virus in birds. Acta virol. 6: 190, 1962. (35)

—, Čahyňa virus in rabbits. Acta virol. 6: 281, 1962. (36)

—, Quantitative study of experimental Čahyňa virus infection in potential reservoir animal. Acta virol. 7: 414—420, 1963. (37)

—, Čahyňa virus in hedgehogs. Acta virol. 8: 258, 1964. (38)

—, Čahyňa virus in bats. Acta virol. 9: 285, 1965. (39)

—, Protilátky neutralizující virus Čahyňa u přirozeně infikovaných domácích králikov a zajacov. Čs. epidem. 15: 304—310, 1966. (40)

—, Quantitative study of experimental Čahyňa virus infection in hibernating hedgehogs J. Hyg. Epid. Microbiol. Immunol. (Praha) 10: 499—509, 1966. (41)

WALLNEROVÁ Z., Thoracic duct lymph and blood of mice at early stage of Čahyňa virus infections. Acta virol. 17: 511, 1973. (42)

YAKUBOV S. K., SEMENOV B. F., MAKSYMOV S. S., KARASEVA P. S., SADYKOVA V. D., CHUNIKHIN S. P., (Serological data on the circulation of Čahyňa virus in the Uzbekistan SSR.) Med. Zhur. Uzbekistan No 4: 27—30, 1971. (In Russian.) (43)

Received 5 July 1974.

V. B., Parasitologický ústav ČSAV,
Flemingovo n. 2., 166 32 Praha 6,
ČSSR