

THE EFFECT OF SODIUM IONS ON THE EXCYSTMENT OF *HYMENOLEPIS DIMINUTA* CYSTICERCoids

J. Barrett and W.Y. Precious

Institute of Biological Sciences, University of Wales, Aberystwyth, Aberystwyth, Dyfed, SY23 3DA, U. K.

The cysticercoids of *Hymenolepis diminuta* can be excysted *in vitro* by mimicking the conditions found in the mammalian gut. Excystment is usually carried out in physiological saline and the presence of specific bile salts and a temperature of approximately 37°C are required. Proteolytic enzymes, such as pepsin and trypsin, speed up excystment but are not essential. Although the bile salt requirements for excystment have been studied in some detail, the role of the inorganic ions in the medium has not been investigated. (Sawada I. 1990: *Exp. Parasitol.* 8: 325-335; Rothman A.H. 1959: *Exp. Parasitol.* 8: 336-364; Campbell W.C., Richardson T. 1960: *J. Parasitol.* 46: 490; Lackie A.M. 1975: *Biol. Rev.* 50: 285-323).

Cysticercoids were recovered from *Tribolium confusum* 8-12 weeks after infection and excysted at 37°C in Krebs Ringer (140 mM NaCl, 6 mM KCl, 3 mM CaCl₂, 1 mM KH₂PO₄) containing 0.5% (w/v) trypsin and 0.3% (w/v) glycotaurocholate. Using isotonic stock solutions of the different salts, the ionic composition of the Ringer was varied without altering the overall ionic strength (Laser H. 1961: in C. Long (Ed.), *Biochemist's Handbook*, E.&F.N. Spon, London, pp. 58-60). Omission of K⁺, Mg²⁺ or Ca²⁺ from the Ringer solution had no significant effect on either the rate or percentage excystment. The NaCl in the medium could be replaced by Na₂SO₄, Na₂NO₃, or Na₂HPO₄/NaH₂PO₄, again with little effect on excystment. However, sodium ions appear to be essential for excystment and NaCl in the medium could not be replaced by LiCl, KCl, RbCl, CsCl, NH₄Cl, choline chloride, N-methyl-D-glucamine, mannitol or sucrose. A dose response curve for sodium (Fig. 1) shows that cysticercoids require at least 70 mM sodium to excyst. This relatively high level suggests that sodium is required either for the operation of a specific transport mechanism or for the maintenance of an electrogenic potential. To further characterize the role of sodium ions in excystment, a range of inhibitors of sodium dependent mechanisms was tested. No significant effect on excystment was found with 1 mM *p*-chloromercuriphenylsulphate, 1 mM orthovanadate, 1 mM sodium tungstate (all non-specific ATPase inhibitors), 1 μM amiloride (sodium transport inhibitor), 5 mM strontium chloride (sodium/calcium exchange inhibitor), 0.5 μM ruthenium red (cal-

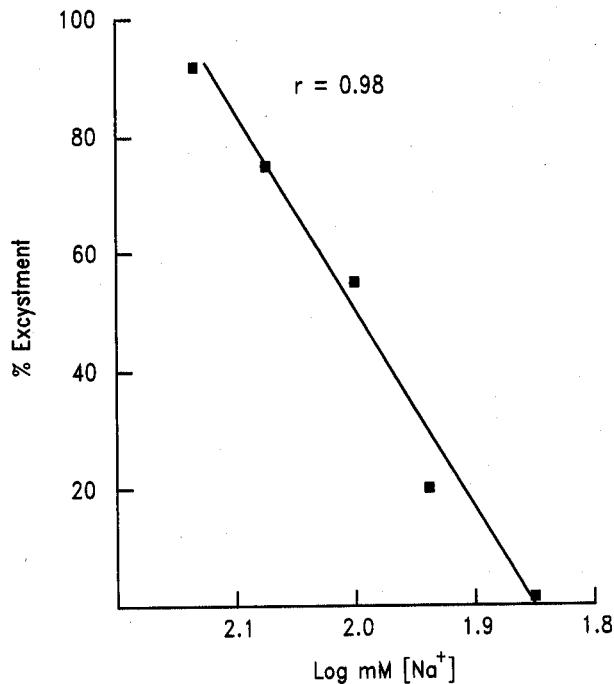


Fig.1. The effect of sodium ion concentration on the % excystment of *Hymenolepis diminuta* cysticercoids.

cium uniport inhibitor), 1 mM ouabain (sodium/potassium exchange inhibitor) or 1 μM monensin (calcium ionophore). However, an 80% inhibition of excystment was found with 0.1 μM acetazolamide, a sodium/proton exchange inhibitor. Excystment was unaffected by 1 mM procaine, but was totally inhibited by 2% (v/v) ethanol and by 0.5 mM praziquantel. Ethanol acts as a general membrane disrupting agent and praziquantel causes paralysis of cestode musculature by opening calcium channels. The failure of some of the inhibitors tested to show any appreciable effects could be due to their inability to penetrate the glycocalyx.

The results suggest that excystment of the cysticercoids may involve the activation of a tegumental proton pump, with a subsequent change in internal pH. Whether this activation is due to a direct effect by bile salts, or whether it is mediated through second messengers is unknown.

Received 15 November 1993

Accepted 19 January 1994