in these samples we still found infective *G. carpelli* stages. Infective stages were present up to a depth of 4-8 cm. This underlines that coccidian stages may survive even in deeper layers of sediment material. Therefore, draining or liming of ponds as a control measure of carp coccidiosis appears only to be effective when it is done for a sufficient time.

In laboratory experiments, parasite naive carp acquired the infection by ingestion of oocysts from the contaminated environment and by feeding on infected tubificids acting as paratenic hosts (Steinhagen and Körtig 1990, op. cit.). Our finding that tubificids from pond sediments were able to induce *G. carpelli* infections indicates a wide distribution of *G. carpelli* stages in tubificids from pond sediments and suggests that transmission of *G. carpelli* by a paratenic host plays a significant role in nature. Organisms from the pond plancton and chironomids appeared not to be of major importance for the transfer of the infection. Our observations, however, indicated that chironomids were able to transfer the infection, which probably occurred by passive transfer with the intestinal contents. In laboratory experiments, carp were resistant to a secondary infection via direct transmission, but a secondary infection could be induced when the fish were fed on contaminated tubificids (Steinhagen and Körtig 1990, op. cit.). In nature, tubificids are the major food organism of carp in their 2nd and 3rd year (Barthelmes 1981, op. cit.) and thus may represent a significant source of infection for these fish.

**Acknowledgements.** Many thanks are due to K. Böttcher and S. Bunnajirakul, Hannover for skillful technical help. S.H. Leenstra and Dr. G. Wiegertjes, Wageningen, The Netherlands generously provided fertilized carp eggs. The study was financially supported by a grant from the Niedersächsische Minister für Wissenschaft und Kultur.

---

**HYSTEROTHYLACIUM NIPPONENSE NOM. N. (NEMATODA: ANISAKIDAE) FOR H. JAPONICUM MORAVEC ET NAGASAWA, 1998 PREOCCUPIED BY HYSTEROTHYLACIUM JAPONICUM RAJYALAKSHMI, 1996**

František Moravec¹ and Kazuya Nagasawa²

¹Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic;
²National Research Institute of Far Seas Fisheries, Fisheries Agency of Japan, 5-7-1 Orido, Shimizu, Shizuoka 424-8633, Japan

Since *Hysterothylacium japonicum* Moravec et Nagasawa, 1998 (Acta Parasitol. 43: 39-42) was found to be a homonym of *H. japonicum* Rajyalakshmi, 1996 (Riv. Parassitol. 13: 53-60) described from India, a new name, *H. nipponense* nom. n., is now proposed for the former, Japanese species.