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Abstract: Herein, we explore the potential influence of Schistosoma mansoni Sambon, 1907 soluble egg antigen (SmSEA) on the
immunopathology of COVID-19 in K18-hACE2 mice infected with an Omicron BA.5 isolate of SARS-CoV-2. SmSEA treatment
was delivered in a single dose by intraperitoneal injection, shortly after intrapulmonary inoculation of SARS-CoV-2. RNA-seq iden-
tified 36 differentially expressed genes in the spleens of virus-infected mice treated with SmSEA vs. PBS on day 5 post infection.
Ingenuity Pathway Analysis of these genes suggested marginal modulation of cytokine responses, with upregulation of the IL-10 and
IL-4 signatures and downregulation of the IFNy signature. However, cytokine responses and histopathology in the lungs were largely

unaffected. Future work will require purification of active helminth compounds and dosing and scheduling optimisation.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) emerged in late 2019 and is the etiological agent of
coronavirus disease 2019 (COVID-19), a discase that affects
more than 700 million people with over 7 million deaths.
Severe COVID-19 is often associated with acute respiratory
distress syndrome, which is characterised by the overpro-
duction of pro-inflammatory cytokines, including tumor ne-
crosis factor (TNF), interleukin-1 (IL-1), IL-2, IL-6, and in-
terferon-gamma (IFNy) (Qudus et al. 2023), a phenomenon
often referred to as “cytokine storm” (Dharra et al. 2023).
Myeloid cells are considered the main effector cells respon-
sible for the hyperinflammatory responses associated with
severe COVID-19 (Duan et al. 2024).

Parasitic helminths, especially soil-transmitted hel-
minths, schistosomes and filarial worms, are among the
most common human infections in developing countries
(Hotez et al. 2008). Helminth infections typically promote
T helper-2 (Th2) immunity and regulatory responses, char-
acterised by the production of cytokines such as IL-4 and
IL-5, and promotion of eosinophil responses, regulato-
ry T cells (Tregs), IL-10-producing B cells (Bregs) and
M2 macrophages (Girgis et al. 2013).

Some reports have suggested that helminth exposure may
protect SARS-CoV-2 infection by counterbalancing exces-
sive T helper-1 (Thl) responses (Wolday et al. 2021) or
through macrophage-dependent T cell activation (Oyesola
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et al. 2023). However, compelling evidence for effective im-
munotherapy of COVID-19 via helminth-derived products
(HDPs) is limited, although several HDPs have been pro-
posed as potential therapeutic immunomodulators (Siles-Lu-
cas et al. 2021, Adjobimey et al. 2022, Cai et al. 2022, Serrat
et al. 2023, Cao et al. 2024). Schistosoma mansoni soluble
egg antigen (SmSEA) can drive strong Th2 polarising ac-
tivity and induce the development of IL-10-producing Breg
and Treg cells in vivo (Haeberlein et al. 2017).

In this study, we sought to determine whether SmSEA
might be used as an immunotherapeutic for COVID-19-
related lung inflammation, using the K18-hACE2 mouse
model of infection and disease. The latter recapitulates the
pro-inflammatory pathways observed in human COVID-19
(Bishop et al. 2022).

To generate S. mansoni eggs, Swiss mice were anaes-
thetised prior to percutaneous exposure to infectious schis-
tosome cercariae (~150—170 per mouse) freshly shed from
freshwater Biomphalaria glabrata (Say) snails (Fogarty et
al. 2019). All animal protocols were approved by the QIMR
Berghofer Medical Research Institute (QIMRB) Animal Eth-
ics Committee (project number: P3818) and the experiments
were carried out in accordance with NHMRC guidelines.

Live parasites were placed in contact with the skin of
the mouse and allowed to penetrate naturally. At 7 weeks
post infection, the mice were euthanised and the liver tis-
sues were removed for egg isolation. The liver tissues were
chopped with a scalpel blade to a smooth consistency.

The pellet was resuspended in 50 ml PBS contain-
ing 20 mg collagenase B, 125 mg trypsin, 10 pg penicillin
and 20 pg streptomycin, and then incubated at 37 °C over-
night with gentle shaking. After centrifugation at 400 X g
for 5 min, the supernatant was removed, and the pellet was
resuspended in 50 ml fresh PBS. After repeated washes
with PBS, the pellet was resuspended in 25 ml fresh PBS.
The suspension was successively passed through 250-
and 150-pm mesh metal sieves.

The filtrate was centrifuged at 400 x g for 5 min and
the supernatant was removed. The egg pellet was resus-
pended in 10 ml PBS and layered onto the top of a Percoll
column (containing a mixture of 8 ml of Percoll and 32 ml
of 0.25 M sucrose in a 50 ml tube). After centrifugation
at 800 x g for 10 min at 4 °C, the liver cells/debris in the
supernatant was removed. The eggs were resuspended
in 25 ml PBS containing 1 mM EDTA and 1 mM EGTA.
After centrifugation at 400 x g for 3 min, the supernatant
was discarded and the pellet was mixed with 10 ml of the
above buffer, and spun at 400 x g for 3 min.

After repeating the above step, the egg pellet was re-
suspended in 5 ml PBS and applied on to the second Per-
coll column (containing a mixture of 2.5 ml of Percoll
and 7.5 ml of 0.25 M sucrose in a 15 ml tube). After cen-
trifugation at 800 x g for 10 min at 4 °C, the supernatant
was removed and egg pellet was resuspended in 10 ml PBS
and spun at 400 x g for 3 min, and the wash was repeated
three times. The egg pellet was washed three times with
PBS and then transferred to 1.5 ml tubes. The purity and
integrity of the isolated eggs were confirmed under a light
microscope (Supplementary Fig. S1A).
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SmSEA was prepared from the isolated eggs as pre-
viously described (Mohammed et al. 2020). Briefly, the
purified eggs were resuspended in 5 ml of cold LPS-free
PBS (Thermo Fisher Scientific, Scoresby, Australia) at
a concentration of 100,000 eggs/ml. The suspended eggs
were sonicated for 15 min on ice until more than 95%
were destroyed. The homogenised eggs were centrifuged
at 2,000 x g for 20 min at 4 °C. The supernatant was col-
lected in a sterile tube and then centrifuged at 20,000 x g
for 1 hr at 4 °C. The supernatant was filtered through a sy-
ringe filter unit (0.22 um) and the concentration of SmSEA
was determined using the Qubit Protein Assay Kit (Thermo
Fisher Scientific, Scoresby, Australia).

The endotoxin concentration in SmSEA was measured
with a Pierce™ Chromogenic Endotoxin Quant Kit (Ther-
mo Fisher Scientific, Scoresby, Australia). The sample was
electrophoresed on a 12% Mini-PROTEAN TGX precast
gel (Bio-Rad Laboratories, South Granville, Australia) to
observe the protein band pattern of SmSEA (Supplemen-
tary Fig. S1B). A portion of SmSEA was heat inactivated
at 80 °C for 20 min, then immediately chilled on ice and
stored at —80 °C until use.

Viral titres for omicron BA.5 were determined using
CCID50 assays as described by Rawle et al. (2021). Briefly,
Vero E6 cells were diluted to 2 x 10% cells/ul medium
(RPMI 1640 supplemented with 2% FCS), and placed
in 96 well plates (100 pl per well). The SARS-CoV-2 virus-
infected cell culture supernatant was diluted in 10-fold serial
in 100 pl of medium and the diluent serial were added to
Vero E6 cells, which were cultured at 37 °C in the incubator
supplied with 5% of CO, for 5 days. The virus titre was
determined by the Spearman-Karber method.

To evaluate the potential immunomodulatory effects
of SmSEA, three groups of female K18-homozygous
hACE2 mice received intrapulmonary infections via the intra-
nasal route (while under light anaesthesia) with an Omicron
BA.S5 isolate of SARS-CoV-2 (5 x 10* CCID,in 50 ul RPMI
1640 medium per mouse) as described previously (Stewart et
al. 2023). There were six mice per group, aged 9-28 weeks,
with a similar mean age and age distribution in each group.
The mice were allowed to recover from anaesthesia, and then
received PBS (50 pl), SmSEA (50 pg in 50 pl), or heat-inacti-
vated SmSEA (hiSmSEA, 50 pg in 50 pl) via intraperitoneal
injection (approximately 1 hr post infection).

Mouse body weight was measured before virus infection
and at 3, 4, and 5 days post infection (dpi), with no signifi-
cant differences in weight loss observed between the groups
(Fig. 1A). The mice were euthanised at 5 dpi, and the virus
titres in the lung, nasal turbinate and brain tissues were de-
termined as previously described (Stewart et al. 2023). The
only significant difference in tissue viral titres was in nasal
turbinates for the hiSmSEA and PBS treatments (Fig. 1B).

To evaluate overt effects on lung consolidation, parenchy-
mal white space analysis was performed using scanned (Ape-
rio AT Turbo, Aperio, Vista, California, USA) H & E-stained
lung sections (Fig. 1C) and QuPath v0.2.3 software as de-
scribed previously (Dumenil et al. 2023). Although SmSEA
treatment had no significant effect, hiSmSEA treatment sig-
nificantly reduced the fraction of white space in the lung pa-
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Fig. 1. A — percentage of body weight change in mice infected with SARS-CoV-2 followed by SmSEA, hiSmSEA or PBS treatment;
B - tissue virus titres in the indicated tissues determined by CCID, assay at 5 dpi (ND, not detected); C — representative images of
H & E-stained lung sections from mice infected with SARS-CoV-2 BA.S and treated with PBS (upper panels), SmSEA (middle panels)
and hiSmSEA (lower panels) at 5 dpi. Examples of areas of white space are indicated by coloured squares; D — white space analysis of
H & E-stained lung sections, a measure of lung consolidation; E — aperio pixel count of purple (nuclear) over red (cytoplasmic) stain-
ing, a measure of leukocyte infiltration; F — the percentage of viral reads out of total clean reads in lung tissue at 5 dpi determined using
RNA-seq; G — RNA-seq analysis of spleen samples from SARS-CoV-2-infected mice treated with SmSEA vs. PBS identified 36 Dif-
ferentially Expressed Genes (DEGs), which were analysed by Ingenuity Pathway Analysis (IPA). The upper panel shows significantly
enriched canonical pathways (FDR < 0.05), and the lower panel shows key inflammatory cytokines predicted as upstream regulators
based on IPA Core Analysis. (Panels A, D and E, One-Way ANOVA followed by Turkey’s comparison; Panels B and F, Kruskal-Wallis
test followed by Dunn’s comparison; n = 6 per group for all analyses; ns, no significance).
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Table 1. Splenic Differentially Expressed Genes (DEGs) identified between SARS-CoV-2-infected mice treated with SmSEA and those

treated with PBS (control) using edgeR.

Ensembl gene ID Gene name logFC logCPM P Value FDR
DEGs upregulated in SmSEA-treated group (FDR < 0.05, logFC > 0)

ENSMUSG00000020108 Ddit4 1.4100027 6.648323 5.3610E-09 8.0228E-05
ENSMUSG00000045382 Cxcrd 1.0737127 6.98207 3.3228E-08 2.4863E-04
ENSMUSG00000024042 Sikl 0.9586609 6.441928 5.0273E-08 2.5078E-04
ENSMUSG00000050075 Gprl71 0.5275645 5.425038 6.7266E-08 2.5166E-04
ENSMUSG00000024190 Duspl 0.9372062 5.333836 1.1506E-07 3.4436E-04
ENSMUSG00000031431 Tsc22d3 1.0535411 7.748562 9.6804E-07 2.4145E-03
ENSMUSG00000026121 Semadc 0.4257101 4.829532 3.5380E-06 6.0348E-03
ENSMUSG00000014773 Dill 0.359489 6.007806 3.6293E-06 6.0348E-03
ENSMUSG00000029135 Fosl2 0.5872802 4.979752 6.7216E-06 1.0059E-02
ENSMUSG00000045817 Zfp3612 0.6268494 7.721205 1.1490E-05 1.5632E-02
ENSMUSG00000032089 1l10ra 0.2951876 7.796179 2.1516E-05 1.9369E-02
ENSMUSG00000079560 Hoxa3 0.7682241 1.220575 2.2002E-05 1.9369E-02
ENSMUSG00000028967 Errfil 1.0123704 5.123544 3.3233E-05 2.5725E-02
ENSMUSG00000006403 Adamts4 0.7330865 1.298229 3.4380E-05 2.5725E-02
ENSMUSG00000114278 Gm49027 1.1820509 -0.7295 3.8811E-05 2.6639E-02
ENSMUSG00000020181 Nav3 0.419236 2.573673 4.0173E-05 2.6639E-02
ENSMUSG00000054545 Ugtlaba 0.8367139 2.170945 4.0942E-05 2.6639E-02
ENSMUSG00000039765 Cc2d2a 0.327445 2.997707 5.6589E-05 3.3775E-02
ENSMUSG00000038872 Zfhx3 0.2835558 3.554542 5.9682E-05 3.3775E-02
ENSMUSG00000026921 Egfl7 0.3844283 5.347486 8.1096E-05 4.1228E-02
ENSMUSG00000049907 Raslilb 0.7504935 2.784222 9.0319E-05 4.3601E-02
ENSMUSG00000019997 Ccn2 0.6775769 5.56265 1.0405E-04 4.8659E-02
ENSMUSG00000000275 Trim25 0.281921 7.799913 1.1827E-04 4.9723E-02
ENSMUSG00000038473 Noslap 0.4494044 1.782445 1.1961E-04 4.9723E-02
DEGs downregulated in SmSEA-treated group (FDR < 0.05, logFC < 0)

ENSMUSG00000049313 Sorll -0.4116065 8.519718 3.4660E-06 6.0348E-03
ENSMUSG00000066687 Zbth16 -0.824671 2.989623 1.9177E-05 1.9369E-02
ENSMUSG00000007872 1d3 -0.4037403 5.731119 1.9318E-05 1.9369E-02
ENSMUSG00000022686 B3gnt5 -0.4908504 6.818884 1.9766E-05 1.9369E-02
ENSMUSG00000022508 Bcl6 -0.4840125 6.238576 1.9769E-05 1.9369E-02
ENSMUSG00000056313 Teim -0.4441411 4.686765 3.2725E-05 2.5725E-02
ENSMUSG00000024401 Tnf -0.5088708 3.775864 4.4562E-05 2.7786E-02
ENSMUSG00000000617 Grm6 -0.4450148 2.299705 6.0938E-05 3.3775E-02
ENSMUSG00000029385 Ceng2 -0.2056347 6.328813 7.6171E-05 4.0711E-02
ENSMUSG00000015316 Slamf1 -0.3503705 4.448769 8.2649E-05 4.1228E-02
ENSMUSG00000005774 Rfx5 -0.2232814 6.671796 1.0835E-04 4.9136E-02
ENSMUSG00000043415 Otudl -0.309302 4459921 1.1308E-04 4.9723E-02

Abbreviations: FC — fold change; CPM — counts per million; FDR — false discovery rate.

renchyma (Fig. 1C and D), indicating a significant increase
in alveolar septal wall thickness. The pro-inflammatory ac-
tivity of heat denatured proteins has been reported previous-
ly (Yoon et al. 2008, Jozefowski and Marcinkiewicz 2010),
which may explain this observation.

Scanned H & E stained lung sections were also analysed
using the Positive Pixel Count algorithm (Aperio Image-
Scope software, Leica Biosystems, Mt Waverley, Australia)
to determine the ratios of purple (nuclear) to red (cytoplas-
mic) staining as described previously (Yan et al. 2022). This
analysis provides a measure of overt leukocyte infiltration,
with no significant differences observed (Fig. 1E).

To ascertain whether SmSEA treatment might mediate
transcriptional changes, RNA-seq was performed using
the Illumina NextSeq 2000 platform as previously
described (Dumenil et al. 2023, Bishop et al. 2024)
on spleen and lung tissues harvested 5 dpi, where RNA
from spleen and lung tissues was analysed independently.
The RNA concentration and quality were checked using
the 4200 TapeStation and RNA ScreenTape Kit (Agilent
Technologies, Santa Clara, USA), with all the samples
showing RNA integrity numbers greater than 9.3.
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For the spleen samples, the average number of mapped
reads per sample was 67.09 million (range 57.51-72.69 million).
For the lung samples, the average number of mapped reads
per sample was 59.48 million (range 48.75-68.90 million).
Processed reads were aligned to GRCm39 vM31 (mouse
genome) and the BA.5 genome using STAR aligner, with
gene expression calculated using RSEM version 1.2.30 (Li
and Dewey 2011).

Differential expression analysis between groups was
performed using the quasi-likelihood pipeline from edgeR
(3.40.2) (Chen et al. 2016) in R version 4.2.0. Only protein
coding genes were selected from the RSEM expected
counts and genes with low expression were filtered out of
the dataset using edgeR’s filterByExpr function. Filtered
gene counts were input to edgeR and the design matrix
model.matrix (~0 + Group) was used, where Group
represented SmSEA, hiSmSEA or PBS, to compare gene
expression between groups. No significant differences in
the percentage of viral reads were observed in lung tissue
between the groups (Fig. 1F).

Thirty-six differentially expressed genes (DEGs, FDR <
0.05) were identified in the spleens of the virus + SmSEA vs.
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virus + PBS groups (Table 1). The upregulated genes in the
SmSEA-treated mice included those encoding receptors for
chemokines and interleukins (e.g., CXCR4 and 1110ra), an-
ti-inflammatory modulators (e.g., Tsc22d3 and Zfp3612), and
pro-angiogenic molecules (e.g., Fosl2 and Egfl7), whereas
the downregulated genes included Zbtb16, a gene that can
promote inflammasome activity (Dong et al. 2023), and Tnf,
a pro-inflammatory cytokine that has pleiotropic effects on
various cell types.

The 36 DEGs were further analysed using Ingenuity Path-
way Analysis (IPA, v84978992, QIAGEN). A number of an-
notations consistent with SEA immunomodulation (Janssen
et al. 2016, Costain et al. 2018, Mu et al. 2021) was iden-
tified, including IL-10 Signalling, Macrophage Alternative
Activation Signalling, Activin Inhibin Signalling Pathway,
as well up-regulation (positive z-scores) of some Th2 (IL-4)
and immunoregulatory (IL-10) cytokine response signatures,
and downregulation (negative z-scores) of some Thl cy-
tokine signatures (IFNG, IL-18, and TNF) (Fig. 1G and Sup-
plementary Table S1).

However, it should be noted that DEG numbers and fold
changes were low, and z-scores only reached 2 for two of the
annotations (IL-10 Signalling and Macrophage Alternative
Activation Signalling), with upstream regulator annotations
for some pro-inflammatory cytokines, IL-6, IL-1B and IL-2,
also showing low positive z-scores (Fig. 1G and Supplemen-
tary Table S1).

Enrichment analysis of Gene Ontology (GO) Biological
Process terms was performed using the enrichGO function
from clusterProfiler version 4.6.2 (Wu et al. 2021). Terms
such as the regulation of hematopoiesis, cytokine produc-
tion, cell signalling and immune system process, and epithe-
lial tube morphogenesis were significantly enriched (Supple-
mentary Fig. S2, FDR < 0.05). These observations are thus
consistent with what might be expected for SmSEA treat-
ment but illustrate a marginal level of activity in this setting.

Twenty-one DEGs (FDR < 0.05) were identified in the
spleens of the virus + SmSEA vs. virus + hiSmSEA groups
(Supplementary Table S2). Among these DEGs, 10 (ap-
proximately 50%) were also present in the above-described
DEG list (Table 1). Although the IPA results were compro-
mised by low DEG numbers, the IL-10 signalling, Th1 and
Th2 Activation Pathway, and IL-4 signature were retained.
However, the TNF and IFNG signatures had low positive
z-scores (suggesting upregulated activity) (Supplementary
Table S3). This finding suggests that heat inactivation did
not effectively eliminate SmSEA immunomodulatory ac-
tivity in this setting, with a number of heat-insensitive SEA
compounds previously identified (Kanse et al. 2005).

Differential expression analysis of lung RNA-seq data
did not reveal any DEGs among the different groups, in-
dicating that, when the current immunisation schedule
and regime are used, SmSEA cannot improve pulmonary
inflammatory responses in K18-hACE2 mice after SARS-
CoV-2 infection. Additionally, classic angiogenic media-
tors, such as angiopoietins and vascular endothelial growth
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factor (VEGF), are elevated in COVID-19 patients and pre-
dictors of adverse outcomes (Madureira and Soares 2023).
The pro-angiogenic nature of SmSEA (Loeffler et al. 2002,
Kanse et al. 2005) may also limit its utility as a candidate
for alleviating the pathology of COVID-19.

The study has some limitations such as the mice used
were in a large range in ages and the experiment was per-
formed only once. The findings of the study suggest that
a single SmSEA inoculation, administered promptly after
SARS-CoV-2 infection, can marginally modulate the cy-
tokine response in the spleen of SARS-CoV-2-infected
K18-hACE2 mice, as revealed by RNA-seq. However, no
meaningful effects on cytokine responses or histopatholo-
gy in infected lungs emerged.

The limited effects may suggest that the SmSEA dose
administered in the study was too low. Alternatively,
SARS-CoV-2 cytokine responses may be too robust, and
SmSEA bioactivity may be intrinsically too weak to me-
diate meaningful therapeutic activity. The future work
for use of HDPs as immunotherapeutics (Alghanmi et al.
2024) will require purification and manufacture of active
ingredients (Ryan et al. 2022) and a series of scheduling
and dosing evaluations (Buitrago et al. 2021).
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