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Abstract: Flagellated protozoa of the order Trichomonadida infect a variety of vertebrates, including poultry such as Gallus gallus
domesticus (Linnaeus). Several trichomonad pathogens are of significant veterinary importance due to their role in diseases that cause
high mortality rates in chickens. Despite the importance of Trichomonadida in poultry health, molecular studies on these protozoa in
North Africa are limited. This study addresses this gap by investigating the genetic diversity and evolutionary relationships of Tricho-
monadida isolated from G. gallus domesticus and its nematode parasite Heterakis gallinarum (Schrank, 1788) in Tunisia, using a mul-
tilocus molecular approach with 18S rRNA and o-actinin 1 genes. Based on both markers, all Tunisian haplotypes, which clustered with
those from France, were found to belong to genotype2. 18S rRNA analysis revealed the existence of protozoans such as Histomonas
meleagridis (Smith, 1895) and Parahistomonas wenrichi Lund, 1963 in coinfection with H. gallinarum, confirming a possible mixed
infection. Additionally, when analysing caecal samples, other Trichomonadida species were identified, including Simplicimonas sp. and
Tetratrichomonas gallinarum (Martin et Robertson, 1911). These findings suggest a complex protozoan community within the studied
hosts. Phylogenetic analysis revealed a close relationship between H. meleagridis and P. wenrichi, as well as between Simplicimonas
sp. and the Monoceromonas-Tritrichomonas group. Both H. meleagridis genotypes 1 and 2 exhibited a sister-group relationship with
P. wenrichi, with strong support for a common evolutionary origin. Tetratrichomonas gallinarum was basal in the tree, suggesting early
divergence in the Trichomonadida lineage. This study provides, for the first time, insights into the genetic diversity of trichomonadids
in Tunisia. The 18S rDNA locus proved to be effective for assessing the genetic diversity of H. meleagridis, P. wenrichi, T. gallinarum
and Simplicimonas sp. and showed a possible mixed infection. The findings provide valuable insights into the genetic characteristics of
these parasites in Tunisian poultry farms and contribute to the understanding of Trichomonadida diversity, enhancing disease control
and prevention efforts.
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Flagellated protozoa of the order Trichomonadida infect
various vertebrates, including birds such as Gallus gallus
domesticus (Linnaeus) (Adl et al. 2012). Several tricho-
monad pathogens have gained special attention because
they are of veterinary importance, leading to variety of dis-
eases that reduce productivity and result in large financial
losses (Maritz et al. 2014). Among them, Histomonas me-
leagridis (Smith, 1895), a prominent pathogen within this
group, triggers severe outbreaks of ‘blackhead disease’ or
histomoniasis in chickens and turkeys, often resulting in
high mortality rates.

In addition to poultry flocks, which can serve as
a reservoir for trichomonad species and can infect other
Galliformes through direct contact, contaminated litter
with eggs of the nematode parasite Heterakis gallinarum
(Schrank, 1788) (Ascaridida: Heterakidae) may act as
a vector for H. meleagridis and other protozoan species
(Cupo and Beckstead 2019, Das et al. 2021, Beer et al.
2022). Other trichomonads, such as Tritrichomonas sp. and
Parahistomonas sp., also impact poultry health, causing
infections thatrange from mild to severe gastrointestinal issues
(Maritz et al. 2014). Trichomonadida are a monophyletic
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Table 1. List of the samples examined of Gallus gallus domes-
ticus caecal and Heterakis gallinarum genomic DNA (Amor et
al. 2018) from different localities of Tunisia. N hosts: number of
hosts; N genomic DNA: number of H. gallinarum genomic DNA
samples.

Gallus gallus domesticus

Localities Geographic coordinates N hosts
Ariana 36.866N, 10.1647E 5
Monastir 35.777N, 10.8263E 5
Kasserine 35.1676N, 8.8365E 5
Tozeur 33.9197N, 8.1335E 5
Mednine 33.3549N, 10.5055E 5
Heterakis gallinarum

Localities Geographic coordinates N genomic DNA
Beja 36.7417N, 9.1894E 20
Sousse 35.8301N, 10.5949E 19
Kairouan 35.6838N, 10.0871E 19
Gafsa 34.3963N, 8.7993E 19
Gabes 33.8892N, 10.0914E 19

group of flagellated anaerobic protozoa characterised by the
presence of hydrogenosomes (modified mitochondria) and
one or more parabasal apparatuses (Golgi complex) along
with a parabasal filament (Honigberg and Brugerolle 1990,
Brugerolle and Lee 2001, Kleina et al. 2004).

Traditionally, protozoan species identification relied
on morphological traits, particularly the organisation and
development of the cytoskeleton. However, the small size
and subtle morphological variations among these taxa pose
significant challenges for consistent identification. The use
of molecular markers has significantly enhanced the ability
to differentiate these organisms (Dufernez et al. 2007, Noda
et al. 2009). Targeting several regions such as the nuclear
small subunit rRNA gene (18S rDNA) and internal tran-
scribed spacer regions (ITS) have been widely used for spe-
cies identification, revealing hidden genetic diversity that is
frequently missed by the morphology-based methods (Adl
et al. 2005, Noél et al. 2007). Additionally, molecular studies
on trichomonads have highlighted their basal position within
eukaryotes, attracting greater scientific interest to elucidate
eukaryotic evolution (Vanacova et al. 1997).

A multilocus molecular approach is essential for accu-
rate pathogen identification in environmental and clinical
samples (Adl et al. 2005, Hampl et al. 2007, Noél et al.
2007) and to revise the classifications of taxa within the
Trichomonadidae (Delgado-Viscogliosi et al. 2000, Ger-
bod et al. 2002). However, there is limited research on the
molecular characterisation of Trichomonadida in North
African poultry. Improved understanding of the molecu-
lar epidemiology of these infections is crucial for effective
disease control and prevention.

One of the biggest knowledge gaps needed to proper-
ly monitor and manage these diseases is the absence of
comprehensive epidemiological and molecular data on
trichomonad species from chickens in Tunisia. The use of
molecular markers for genetic differentiation can aid in un-
derstanding the epidemiology, pathogenicity and potential
zoonotic risks of these protozoans, while also providing
insights into their evolutionary history, host adaptation and
drug resistance mechanisms, all of which are essential for
developing effective treatment and control strategies.
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This study aims to fill this knowledge gap by investi-
gating, for the first time, the genetic diversity and evolu-
tionary relationships of trichomonad taxa isolated from Tu-
nisian poultry populations through a multilocus molecular
approach and phylogenetic analysis, providing valuable in-
sights into the epidemiology of these parasites in Tunisian
poultry farms and contributing to the global understanding
of the diversity of the Trichomonadida.

MATERIALS AND METHODS

Sample collection

In 2022, a total of 25 samples of caecal portions of backyard
chickens Gallus gallus domesticus (n = 25) were collected in five
Tunisian localities, with five bird specimens sampled from each
locality (Table 1). The localities of sampling were: Ariana, North
(36.8668N; 10.1647E); Monastir, Est (35.777N; 10.8263E);
Kassrine, Centre (35.1676N; 8.8365E); Tozeur, West (33.9197N;
8.1335E); Mednine, South (33.3549N; 10.5055E) (Fig. 1). Cae-
cal samples were collected postmortem from birds regularly
slaughtered for commercial purposes. The sampled flocks were
previously diagnosed with histomonosis.

After collection, caecal samples were refrigerated at 4°C
and immediately transported to the laboratory, where they were
stored at -20°C. Additionally, 96 genomic DNA samples of adult
Heterakis gallinarum nematodes found in the caecal content of
chickens, collected during a previous study (Amor et al. 2018),
were included in the analysis (Table 1, Fig. 1).
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Fig. 1. Map of Tunisian localities where samples of Gallus gallus
domesticus (Linnaeus) (blue triangle) and Heterakis gallinarum
(Schrank, 1788) (genomic DNA samples — red circle; see Amor et
al. 2018) were collected.
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Table 2. Information on the sequences obtained from GenBank and used in the phylogenetic analysis.

Farjallah et al.: Genetic characterisation of Trichomonadida

Species Geographical origin Hosts Site of infection Accession number
. . Hungary Gallus gallus domesticus caecum HG008099
Dientamoebidae sp. France Meleagris gallopavo caecum HG008100
Glyptotermes fuscus Japan Glyptotermes fuscus hindgut AB032220
Austria Turkeys faeces AJ920323
France Turkeys - AF293056
France M. gallopavo caecum HG008093
Austria G. gallus domesticus caecum HG008098
Austria M. gallopavo caecum HG008084
Austria M. gallopavo caecum HGO008088
France M. gallopavo caecum HGO008085
Histomonas meleagridis France M. gallopavo caecum HG008094
Hungary G. gallus domesticus caecum HG008086
France chickens caecum EU647885
France turkeys caecum EU647886
France turkeys caecum EU647887
France M. gallopavo caecum HG008091
France M. gallopavo caecum HG008096
France M. gallopavo caecum HGO008095
France M. gallopavo caecum HG008097
Macrotrichomonoides restis USA Neotermes jouteli hindgut KJ493791
Metadevescovina extranea Australia Mastotermes darwilliensis hindgut X87132
Monocercomonas colubrorum Czech Republic Hydrosaurus pustullatus - DQ174298
France turkeys caecum EU647889
Vietnam G. gallus domesticus caecum LK031727
Parahistomonas wenrichi Vietnam G. gallus domesticus caecum LK031728
Vietnam G. gallus domesticus caecum LKO031729
France turkeys caecum EU647888
Simplicimonas sp. Austria G. gallus domesticus caceum HGO008105
New Guinea Paraectatops costalis intestine KJ101559
S similis Czech Republic Uroplatus lineatus faeces GQ254637
' Philippines Bubalus bubalis rectum KC953859
Teranympha mirabilis Japan Reticulitermes speratus intestine AB183876
Tetratrichomonas gallinarum Austria turkeys faeces AJ920324
Tritrichomonas augusta China Pelophylax nigromaculatus rectum OL505402
) USA Bos taurus prepucium AY055799
T. foetus .
USA domestic dog faeces AY754332
T. nonconforma Cuba Anolis bartschi cloaca AY055803
T. suis Germany Sus scrofa domesticus faeces MKS801504

DNA extraction, amplification and sequencing

Genomic DNA was extracted using a modified SDS-based
method (Farjallah et al. 2024). The samples were digested with
SDS-proteinase K at 56 °C for 2 hours. After inactivation of pro-
teinase K by thermal shock, proteins were precipitated using
a 10 min centrifugation at 13,000 rpm. DNA was then precipi-
tated from supernatants using 100% ethanol. The DNA was air-
dried, resuspended in 100 pl TE buffer.

In order to screen samples for protozoans, the 18S rDNA
(603 bp) was first targeted, using primers 18S-F/18S-R (Bilic et
al. 2014). The specific primers CH-EFhF/CH-EFhR (Bilic et al.
2014) were used for the amplification of a-actinin 1 (1,160 kb)
in order to reveal the possible presence of Histomonas melea-
gridis genotypes. The polymerase chain reactions (PCR) were
performed in a 25 pl reaction containing 1 pl of genomic DNA,
12.5 ul 2x GoTaq Green Master Mix (Promega), 10 pmol of each
primer, and ddH,O. Negative controls were always included in
PCR reactions to assess possible contamination.

The amplification reaction conditions for both a-actinin 1 and
18S rDNA were as follows: denaturation at 94°C for 15 min-
utes; 40 cycles of 95 °C for 30 seconds, 53 °C for 30 seconds and
72°C for 1 minute; followed by final elongation step at 72 °C for
10 minutes. PCR amplification was performed in a BentoLab
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Thermal Cycler. The amplified products were examined by gel
electrophoresis (1% agarose) with the molecular weight marker
HyperLadder 100 bp (Bioline Reagents Ltd., London, UK). PCR
products were sequenced at Macrogen (Macrogen Inc., Seoul,
Korea) using forward primers. The obtained sequences were
manually checked and aligned using Unipro UGENE version 1.3
(Okonechnikov et al. 2012). Sequence alignments included ref-
erence sequences available in GenBank obtained using BLAST
algorithm (Table 2, Supplementary files) (Altschul et al. 1990).

Genetic distances based on Kimura 2-parameter model were
calculated within and between the observed taxa using Mega X
version 10.2.5 (Kumar et al. 2018). Comprehensive examination
of polymorphism and divergence in sequence datasets was made
using DnaSP, namely number of polymorphic sites, average nu-
cleotide difference (k), haplotype diversity (Hd), nucleotide di-
versity (Pi) (Librado and Rozas 2009). PartitionFinder version
2.1 (Lanfear et al. 2017) was used to identify the best-fit nucle-
otide substitution model for each genetic marker. RAXML (Ran-
domised Axelerated Maximum Likelihood) version 8 (Stamatakis
2006) was used to create maximum likelihood (ML) phylogenet-
ic trees. Using bootstrapping, the phylogenetic trees’ robustness
was evaluated using 2,000 pseudoreplicates. Teranympha mirabi-
lis Koidzumi, 1917 was added as an outgroup (AB183876).
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Fig. 2. Maximum Likelihood tree of trichomonad species from
Tunisian samples based on 18S rDNA sequences. Terminal nodes
within the trichomonad clades (highlighted in bold) represent the
studied populations. Support values for each node are the boot-
strap value (BS) of ML. Only nodal support values > 50% are
shown. Studied populations are highlighted in bold

RESULTS

18S rDNA dataset analysis

Upon examination, all caecal samples from suspected
cases exhibited typical gross lesions, including thickened
caecal walls and the formation of caseous cores. A total of
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121 18S rRNA gene sequences from 25 caecal samples and
genomic DNA of 96 Heterakis gallinarum nematodes were
obtained by PCR amplification and sequencing. A careful
analysis of the chromatogram data verified that there were
no double peaks, ensuring that all chromatogram showed
a single, unique peak every time. Since the 18S rDNA
primers can generate amplicons from different protozoan
species, the specificity of the obtained sequences was as-
sessed using the BLAST algorithm.

Consecutively, reference sequences from several Tricho-
monadida available in GenBank were added to the 18S
DNA dataset. The 25 sequences, from caecal samples, were
identified as: Histomonas meleagridis (96-99% identi-
ty, HG008095; n = 14); Parahistomonas wenrichi (Lund,
1963) (94-97% identity, LK031729; n = 5); Simplicimonas
sp. (97-98% identity, HG008105; n = 5); Tetratrichomon-
as gallinarum (Martin et Robertson, 1911) (98% identity,
AJ920324; n = 1). Histomonas meleagridis sequences gen-
erated 15 haplotypes, P. wenrichi 11, Simplicimonas 5 and
T. gallinarum one haplotype (Table 3).

Sixty-two sequences obtained from the 96 H. galli-
narum genomic DNA shared 96-99% identity with H. me-
leagridis (HG008095) whereas 34 sequences shared 94—
98% identity with P. wenrichi (LK031729). The haplotypes
obtained were deposited in GenBank under the accession
numbers PQ682583-PQ682614. Histomonas meleagridis
and P. wenrichi were isolated in all studied localities from
both caecal samples and H. gallinarum genomic DNA. The
other species were only found in caecal samples: Simplici-
monas sp. in Kasserine (n = 3) and Tozeur (n = 2), T. galli-
narum in Ariana (Table 3).

Multiple alignment of H. meleagridis sequences (n = 31)
showed 25 mutations of which 23 were polymorphic and
the average nucleotide difference was k = 9.172. Para-
histomonas wenrichi sequences differed by 26 mutations of
which 16 were polymorphic and k = 6.075. Simplicimonas
sp. dataset included 9 sequences, but it showed 84 mutations
defining 74 polymorphic sites with k = 22.900. Haplotype
diversity (Hd) ranged from 0.875 in the case of H. melea-
gridis to 1 for Simplicimonas sp. for T. gallinarum, Hd was
1, but this clade contained only two sequences. Nucleotide
diversity (Pi) values varied from 0.64% (H. meleagridis) to
4.9% (Simplicimonas sp.) (Table 4).

The maximum likelihood phylogenetic tree topology
(ML) showed several highly supported clades. Histomonas
meleagridis sequences were distributed in two subclades
identified previously by Bilic et al. (2014) as genotype 1
and genotype 2, with all 15 H. meleagridis haplotypes of
the current study clustering within the genotype 2 subclade,
clustered with French sequences (HG008095, HG008096
and HG008097) (Fig. 2).

All P. wenrichi appeared as a highly supported mono-
phyletic clade including the 11 haplotypes of the current
study. Simplicimonas sp. haplotypes were grouped within
a highly supported clade, including Simplicimonas similis
Cepi¢ka, Hampl et Kulda, 2010 and previously published
sequences of Simplicimonas sp. The last clade with a basal
position within the phylogenetic tree included two speci-
mens identified as 7. gallinarum (Fig. 2).
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Table 3. Species of Trichomonadida observed in this study, with their geographical origin, type of sample and GenBank accession

numbers. N — number of obtained 18S rRNA gene sequences.

Species Geographical origin ~ Hosts Type of sample N Haplotypes  Accession number
Histomonas meleagridis  all studied localities I?IZIZZZ ]‘g?lgf;l lcj:gziicus ;2%::Os§?g;§zmic DNA ég HI-HI15 };%6688225589377
Parahistomonas wenrichi all studied localities IC-;IZZI:Z /‘?f?lgfz l?;;"riigcus ;aelerr?:%os(??gelﬁf)mic DNA 354 H1-HI11 %%668822569085;
Simplicimonas sp. I_lg(';izs:le;ine Gallus gallus domesticus ~ caecal samples 5 HI1-HS5 1;,%668822660193_
Letratrichomonas Ariana Gallus gallus domesticus ~ caecal samples 1 Hl1 PQ682614

gallinarum

The genetic distance between clades ranged from 11.3%
(H. meleagridis — P. wenrichi) to 21.8% (T. gallinarum —
P. wenrichi) (Table 5). The distance within clades ranged
from 0.58% (T gallinarum) to 3.41% (Simplicimonas sp.).
The genetic distance between genotype 1 and genotype
2 of H. meleagridis was 4%.

a-actinin 1 dataset analysis

Due to the specificity of the CH-EFhF/CH-EFhR prim-
ers, the a-actinin 1 sequence analysis revealed two patterns
corresponding to the previously observed 18S rDNA geno-
type 1 and genotype 2 of H. meleagridis. No genetic vari-
ability was detected among the 76 Tunisian sequences ana-
lysed, all of which grouped within the genotype 2 and with
100% identity with the reference sequences HG008107
and ON960042. The obtained sequences were deposited in
GenBank under accession numbers PV548923-PV548926.

DISCUSSION

The aim of this study was to assess for the first time the
genetic diversity of Trichomonadida in Tunisia by examining
two nuclear markers, the 18S rDNA and a-actininl. One set
of samples included 25 caecal samples collected from five
Tunisian localities whereas the other one includes 96 Heter-
akis gallinarum genomic DNA from five localities previous-
ly studied for the molecular characterisation of the nematode
H. gallinarum. Based on the 18S rDNA dataset analysis, the
Tunisian samples were split into four main clades.

The first clade was identified as Histomonas melea-
gridis, originating from both the caecal samples and the
genomic DNA of H. gallinarum. When including reference
sequences from GenBank, H. meleagridis clade was divid-
ed into two distinct clusters previously identified as gen-
otype 1 and genotype 2 (Bilic et al. 2014). The use of the
term ‘genotype’ was justified by Bilic et al (2014) based
on the observed genetic distances relatively high ranging
between 2.0% and 4.4%. Based on both markers, all Tu-
nisian haplotypes, which clustered with the French ones,
were found to belong to genotype 2, with a genetic distance
of 4% (18S rDNA) between the two genotypes.

However, Bilic et al. (2014) found that in European
countries and Azerbaijan, genotype 1 had a higher prev-
alence than genotype 2. The different patterns of genetic
structure of H. meleagridis observed by Bilic et al. (2014)
could be explained by the geographic distance (isola-
tion-by-distance). Populations close to each other are of-
ten more similar genetically, while distant populations are
often more divergent (Sexton et al. 2014, Bontrager and
Angert 2018, Goudarzi et al. 2019). Host genotype and di-
versity can, also, influence the evolution of parasites, lead-
ing to the development of distinct parasite lineages (Ekroth
et al. 2021).

In fact, the fitness of parasites is severely affected by var-
iations in the host immune response, which is determined
by the host genetic background (Tavalire et al. 2016). Some
parasite genotypes may infect specific host genotypes but
not others, and similarly, hosts may exhibit varying levels
of susceptibility to particular parasite genotypes (Barribeau
et al. 2014). Finally, human activities can influence the pat-
tern of genetic structure, leading to the spread of the same
haplotype within a region, or to the formation of divergent
populations when host trade is limited (Mweu et al. 2012).

Despite the observed low genetic variation, the analy-
sis of the coding a-actininl gene supported the existence
of two different genotypes within H. meleagridis. The ob-
served differences in genetic variation across the studied
markers could be attributed, on the one hand, to the vary-
ing level of conservation, with a stronger conservation in
the protein-coding regions. On the other hand, the repeti-
tive nature of the 18S rDNA region may be the source of
micro-variation even within the same genome. Moreover,
several studies have reported micro-variations within par-
tial 18S rDNA regions of H. meleagridis when examining
PCR clones (Gerbod et al. 2001, Mantini et al. 2009). Since
these studies did not use single-cell clones, the observed
variations could potentially be attributed to mixed infec-
tions or amplification errors.

Interestingly, 18S rDNA analysis revealed the existence
of protozoans such as H. meleagridis and Parahistomonas
wenrichi in coinfection with H. gallinarum, confirming

Table 4. Standard population genetic statistics of the 18S rDNA sequences of trichomonad species from Tunisian samples. PS — number
of polymorphic sites; k — average number of nucleotide differences; Hd — haplotype diversity; Pi — nucleotide diversity.

Clade Number of sequences Total number of mutations PS k Hd Pi

Histomonas meleagridis 31 25 23 9.172 0.875 0.64%
Parahistomonas wenrichi 16 26 20 6.075 0.92 1.14%
Simplicimonas sp. 9 84 74 22.9 1 4.97%
Tetratrichomonas gallinarum 2 2 2 2 1 0.38%
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Table 5. Genetic distances based on Kimura 2-parameter (K2P)
within trichomonad species from Tunisian samples 18S rDNA
sequences.

Hist s Parahist S Simplicimonas s
meleagridis wenrichi P P-

Histomonas

meleagridis

Paral?is{omonas 0.1133

wenrichi

Simplicimonas sp. 0.1623 0.1890

Tetratrichomonas 0.1913 02176 0.1180

gallinarum

a possible mixed infection (Mantini et al. 2009, Bilic et
al. 2014). In addition, when analysing caecal samples,
other Trichomonadida were identified, such as Simplici-
monas sp. and Tetratrichomonas gallinarum. These find-
ings suggest a complex protozoan community within the
studied hosts. Previous studies have indeed identified the
presence of Trichomonas gallinae (Rivolta, 1878), T. galli-
narum, Blastocystis sp., Simplicimonas sp., P. wenrichi, Tr-
itrichomonas sp., and Dientamoeba sp. in the poultry gut,
alongside H. meleagridis (Kemp and Reid 1965, Stenzel
and Boreham 1996, Lollis et al. 2011, Bilic et al. 2014,
Nguyen et al. 2015). This underscores the importance of
their specific characterisation, particularly in instances of
concomitant infection.

Bilic et al. (2014) acknowledged the broad specificity of
the designed primers 18S-F/18S-R allowing the detection
of several trichomonadida taxa. Here a multilocus approach
has shown to be more accurate to resolve species diversity
and to avoid mixed infection complications. In the case of
Simplicimonas sp., species identification was unsuccessful
due to the observed high genetic variation and the lack of
18S rDNA matching sequences in databases.

The phylogenetic tree analysis revealed a close rela-
tionship between H. meleagridis and P. wenrichi, as well
as between Simplicimonas sp. and the Monoceromonas-Tr-
itrichomonas group. In the obtained maximum likelihood
(ML) phylogenetic tree, both H. meleagridis genotypes 1
and 2 exhibited a sister-group relationship with P. wenrichi,
indicating a common evolutionary origin. This clustering is
strongly supported by a bootstrap value of 86%, reinforcing
previous phylogenetic inferences that suggested the group-
ing of Parahistomonas Lund, 1963 and Histomonas Tyzzer,
1920 (Gerbod et al. 2001, Mantini et al. 2009).

As indicated by the present phylogenetic analysis, the
genera Histomonas and Parahistomonas seem to share
a common ancestor and, as previously mentioned, both are
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found in the caccum of galliform birds, including chickens,
turkeys, quail, partridges and pheasants, infecting the same
hosts and environmental niche (Malewitz et al. 1958, Lund
and Chute 1972, Wernery and Kinne 2002, Esquenet et al.
2003, Mantini et al. 2009).

These close phylogenetic and morphological relation-
ships suggest that speciation leading to these taxa likely
occurred recently in birds infected with their common an-
cestor. Indeed, as highlighted by Mantini et al. (2009) two
independent colonisation events of the avian caecum by
Histomonas and Parahistomonas over evolutionary time
seem improbable, given their close relationship.

Histomonas and Parahistomonas represent a remarkable
example of parallel adaptation to the same host following
speciation among trichomonads. Note that 7. gallinarum
occupied a basal position in the phylogenetic tree, suggest-
ing that it diverged earlier in the evolutionary history of
these trichomonadid species. This phylogenetic topology
was concordant with phylogenetic studies on parabasalid
microorganisms (Gerbod et al. 2001, Mantini et al. 2009,
Cepicka et al. 2010, Malik et al. 2011, Noda et al. 2012).
However, further studies based on multilocus approach and
more comprehensive taxon sampling are needed to resolve
the reported uncertainties and to better understand the evo-
lutionary history of these protozoans.

In conclusion, this study is the first investigation of the
diversity of Trichomonadida in Tunisia. The 18S rDNA lo-
cus proved to be effective in assessing the genetic diversity
of H. meleagridis, P. wenrichi, T. gallinarum and Simplici-
monas sp., and showed possible mixed infections. Further
studies should focus on the relationships between these
protozoan taxa, the biological significance of each group
or genotype, their epidemiological roles and pathogenic
effects. Moreover, animal surveys in endemic areas are es-
sential to improve the evaluation of specific discrimination
between other molecular markers.
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