STAGE-SPECIFIC ANTIBODY RESPONSE OF MASTOMYS NATALENSIS DURING THE COURSE OF DIPEITALONEMA VITEAE INFECTION

D. P. SINGH, S. MISRA and R. K. CHATTERJEE

Division of Parasitology, Central Drug Research Institute, Lucknow

Abstract. Stage-specific haemagglutinating (HA) and precipitin antibodies (PA) to infective larvae (L$_2$), adult worms and microfilariae (mf) have been demonstrated in sera of Mastomys natalensis during the course of Dipetalonema viteae infection using indirect haemagglutination (IHA) and Ouchterlony's gel-diffusion tests. L$_2$-specific HA antibody titre was shown to be quite low and lasted for shorter period whereas adult-specific antibody response was significantly higher and persisted for longer duration (beyond day 240 post exposure). No precipitin antibody to L$_2$ stage could be detected, however, significant adult-specific antibody was detected which ultimately tapered off by day 210 post exposure (p. e.). In contrast, mf-specific PA which appeared at the beginning of patency, never disappeared even at the late stage of infection. Mf-specific HA antibody appeared at early incubation period (day 15 p. e.) and after exhibiting two peaks, one in the midst of prepatent period (day 30 p. e.) and the other on day 180 p. e. persisted at low level during the late stage of infection when antifilarial lesions developed.

Filarial parasites exist in the tissues/body cavities of vertebrate host for a considerable period. Though infective larvae (L$_2$) and other developing stages have lesser span of existence, adult worms and microfilariae coexist for a prolonged period. During their stay in the host, immune reactions are likely to develop against these life stages. Au et al. (1982) working with Brugia pahangi in cat observed development of antibody initially against L$_2$ followed by adult and then microfilariae (ML). Nevertheless cross reactive surface antigens were also shown to exist in mf and adults of B. pahangi (Philip et al. 1986). It is therefore worthwhile to understand the immunoglobulin response of host directed against different developmental and adult stages of the parasite which would be of help in stage-specific diagnosis as well as to examine immunogenic nature of different life stages and their possible impact in development of resistance. The present communication reports the results of investigation on sequential changes in stage-specific haemagglutinating and precipitin antibody response of Mastomys natalensis during Dipetalonema viteae infection.

MATERIALS AND METHODS

Infection: Male mastomys were infected with D. viteae using the method of Worms et al. (1981). Three groups, each consisting of 7 male mastomys (6 wks old), were infected with 100, 50 and 25 L$_2$, respectively, obtained from freshly dissected infected ticks Ornithodoros moubata. Assessment of microfilariaemia: Microfilariaemia of each animal was estimated by examining 5 cm3 of tail blood taken initially on day 60 p.e. and thereafter every time while collecting blood for serologic investigations.

Preparation of D. viteae antigens:

Adult antigen

Adult worms of both sexes of D. viteae were recovered from infected mastomys. These were homogenized for 30 minutes in a tissue homogenizer and sonicated (Soniprep 150° MSE, England)
HAEMAGGLUTINATING (HA) ANTIBODY RESPONSE

Fig. 1 shows the details of stage-specific HA antibody during the course of *D. vitesae* infection in mastomys.

i) L₀-specific response

L₀-specific IHA titre was detected (log₂ titre 1) on day 15 p.e. This level was slightly increased to 2 on day 60. The highest log₂ titre (5) directed against L₀ was found on day 90. Thereafter, the titre started receding abruptly reaching to 1 on day 120, and no HA antibody could be detected on day 150 p.e.

ii) Adult-specific response

Like L₀, adult-specific titre could also be detected from day 15 p.e., which increased steadily till day 150 when it was recorded as 14. Afterwards the titre came down to only 2 on day 240 p.e.

iii) MF-specific response

Though mf-specific IHA titre could be recorded on day 15, it varied significantly throughout the course of infection. The highest titre (8—9) was recorded on day 30 and again on day 180 p.e. The mf-specific peak titre was, however, lower in comparison to adult-specific maximum titre. On day 240 p.e., the mf-specific titre was reduced to 2.

It was observed (Fig. 2) that the nature and intensity of HA antibody pattern did not alter (using adult antigen) when the amount of infective inoculum varied (i.e., 25, 50 and 100 L₀). It was also established in the present study that IHA reaction was due to IgM antibody as confirmed with β-mercaptoethanol treatment of serum samples.

PRECIPITIN ANTIBODY RESPONSE

Fig. 3 shows the details of precipitin antibody response against three important life stages of *D. vitesae* in mastomys.

i) L₀-specific response

L₀ specific precipitin antibody titre could not be detected in infected animals at any stage during the course of 270 days of observation period.
ii) Adult-specific response

Adult-specific precipitin antibody response was significant. Initially, the titre could be detected on day 30 p.e.; thereafter it showed progressive rise reaching to peak level (9) on day 120 p.e. However, adult-specific titre totally disappeared on day 210 p.e.

iii) MF-specific response

The precipitin antibody titre as detected with mf antigen was somewhat different. Antimicrofilarial antibody appeared at the beginning of patency, i.e. on day 60 p.e. on day 270 p.e. The titre which was quite low (2) increased to 6 on day 270 p.e. The maximum intensity of microfilaraemia (recorded on day 90 p.e.), however, did not coincide with peak antimicrofilarial precipitin titre.

DISCUSSION

The present study which was directed to explore antibody response (haemagglutinating and precipitin types) of the host to different developmental and adult forms of filarial parasite and their possible immunogenic impact, has exposed certain facts. It may be recalled in this connection that filarial parasites undergo certain developmental changes before reaching adulthood in the vertebrate host. Amongst different life stages, L2 and subsequent forms have comparatively shorter period of existence whereas the adult and mf continue to stay for prolonged period (Fig. 4). During the presence of various life stages immune responses of different natures and intensities are liable to be elicited besides certain common antigenic responses (Prusse et al. 1982). It is now known that antibody plays pivotal role in the host’s immune mechanisms responsible for the clearance of at least one life stage, the mf from infected blood (Weiss and Tanner 1979).

HA antibody as measured with adult antigen showed gradual increase in the titre reaching ultimately a peak level at the period coinciding with peak microfilaraemia (generally between days 90 and 120 p.e.). Interestingly, when the animals developed acquired resistance (day 240 p.e.) against circulating mf, adult-specific IHA titre went down to lowest level. An analysis of the life stages of D. vitaeae (Fig. 4) reveals that adult worms come into existence around day 45 p.e., whereas certain percentage of them start dying around day 180 p.e. The peak adult-specific IHA titre (18) which was built up on day 150 p.e., appears to be due to the death of microfilariae (adult worms). The death of adults which started from day 180 p.e., was completed around day 240 p.e., when adult-specific IHA titre also dwindled to its lowest ebb. The death of adult worms was also preceded by attainment of peak level of adult-specific precipitin antibody around day 120 p.e. Thus both agglutinating and precipitin antibodies were raised to the highest level before the onset of death of adult worms. It was also interesting to observe that when adult-specific precipitin titre totally disappeared on day 210 p.e., IHA titre persisted, though at a low level, up to the present observation period (day 240 p.e.). Persistence of low adult-specific IHA titre for prolonged period could partly be due to mf-specific reaction following the use of antigen derived from adult including females which also contained mf in their uterus.

Of the two antibodies assessed, adult-specific IHA titre persisted throughout the course of infection (from day 15 p.e. to 240 p.e.) whereas precipitin antibody lasted for shorter period (from day 30 p.e. to 180 p.e.). As participating immunoglobulin in IHA titre test was IgM class (as evidenced by β-ME treatment), the demonstration of filaria-specific IgM will possibly be helpful in diagnosing the disease from early to late stage of infection.

The HA antibody as detected with mf antigen revealed certain interesting as well as intriguing results. There were apparently two peaks of agglutinating antibody titre of which the first one appeared at an early stage of infection (day 30 p.e.) which slowly disappeared during the next 90 days. The second peak was detected on day 180 p.e. The levels of both the peaks were almost equal. However, unlike the first peak, a low IHA titre (2) persisted for more than day 240 p.e. If the course of microfilaraemia is taken into account in relation to mf-specific IHA titre, it would be evident that first peak of titre appeared almost in the midst of incubation period (total incubation period being 55 ± 5 days). This was perhaps due to antigenic cross-reactions between infective larvae or their subsequent developmental stages and mf. The peak level of microfilaraemia generally occurred around day 90 to 120 p.e. when quite low mf-specific HA antibody could be detected. This could partly be due to usual "shift" from IgM to IgG response (Roitt 1980). The other possibility could be the formation of immune complexes due to the prevalence of excess of mf antigen. Earlier, the antibody titres detected in human subjects as well as in experimental animals with high microfilaraemia, were low or absent (Soulsby et al. 1976; McGregor et al. 1980; Dissanayake and Ismail 1980).

The second peak of mf-specific IHA titre, as observed on day 180 p.e., coincided with developing microfilaraemia which was total around day 240 p.e. It may be mentioned that adult worms, especially the females which also contained mf, started dying around day 180 p.e. The second mf-specific IHA peak at this stage appears
REFERENCES

DISSANYAKE S. ISMAIL M. M., 1980: Antibodies to dogs in mastomys has been elaborated by Sing et al. (1987).

In conclusion it may be said that the intensity of antibody response to adult parasites is highest in comparison to other important life stages. On the other hand, if specific antibodies, though not prevalent in high concentrations, persist for the longest time. Nevertheless, Lf-specific antigenic stimulus is the weakest, possibly due to their short stay in the host. The different antibodies also appear to play some role in the elimination of parasites.

Acknowledgements. The financial assistance by the Indian Council of Medical Research in the form of Junior Research Fellowship to one of the authors (D.P.S.) is gratefully acknowledged.

СЕПИФИЧЕСКАЯ ДЛЯ ОТДЕЛЬНЫХ СТАДИЙ ИММУННАЯ РЕАКЦИЯ У MASTOMYS NATALENSIS В ТЕЧЕНИЕ ЗАРАЖЕНИЯ ФИЛИНЕЙ DIPETALONIA VITEAE D. П. Сигет, Ш. Масра и Р. К. Четверкин

Резюме. Специфика для отдельных стадий гематогенного инваза (Ia) и продуцентирующие (PA) антитела против инвазной личинок (Ld), половозрелых червей и микрофиллярий (mf) были обнаружены в сыворотке Mastomys nataleensis в течение зарождения филярий Dipetalonia viteae с помощью тестов непрямой гемагглютинации и диффузии через гель (реакция Оухтерлона). Титры 1-специфических NA антител были совсем невелики и встречались более короткое время, только как титры Ld, появлявшихся в одном случае (со 240 дней после заражения). Продуцентирующие антитела у личинок Ld не встречались, а у половозрелого зверька были обнаружены антитела только в одном случае. В отличие от этого, 1-специфические PA, которые появились в начале вириозы, никогда не исчезали, даже ни в одной стадии заражения. МФ-специфические NA антителы были обнаружены только у половозрелого зверька (на 240 дней после заражения) и, позднее, образуя два пика; в конце вириозного периода (на 20 дней после заражения) и на 180 день после заражения. Низкий титр этих антител переживал до поздней стадии заражения, когда появились микрофиллярии.
The publication summarizes the contemporary knowledge about two groups of arthropods important for human and veterinary medicine: Insects and Acarina. Both large chapters of the text are introduced by general characteristics, morphology of adults, and methods of conservation and determination. The individual systematic units of different level are uniformly treated, with data on their morphology, biology, and harmfulness. A great attention is devoted to the correct determination of the parasites. Keys are given mostly for adults or for females only, and when necessary also for larvae, accompanied by numerous figures of very good quality. The text closes with an index of Latin names of insects and another one of mites.

The book is a collective work of 16 specialists from various institutes of the USSR. Carefully edited, it reflects a great progress achieved in the studies of parasitic insects and mites in the Far East during the last 25 years. Although oriented regionally, it may very well serve as a useful handbook for practice also in other countries.

Dr. V. Černý, C.Sc.