Occurrence and genetic diversity of Cryptosporidium spp. in wild foxes, wolves, jackals, and bears in central Europe

Martin Kváč1,2, Eva Myšková1, Nikola Holubová1,2, Klára Kellnerová2, Marta Kicia1, Dušan Rajský1, John McEvoy3, Yaoyu Feng6,7, Vladimír Hanzal1 and Bohumil Sak1

1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic;
2 Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic;
3 Department of Biology and Medical Parasitology, Wrocław Medical University, Wrocław, Poland;
4 Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovak Republic;
5 Veterinary and Microbiological Sciences Department, North Dakota State University, Fargo, USA;
6 Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China;
7 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China;
8 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic

Abstract: Parasites of the genus Cryptosporidium Tyzzer, 1910 are one of the most common protistan parasites of vertebrates. Faecal samples from 179 red foxes (Vulpes vulpes [Linnaeus]), 100 grey wolves (Canis lupus Linnaeus), 11 golden jackals (Canis aureus Linnaeus), and 63 brown bears (Ursus arctos Linnaeus) were collected in the Czech Republic, Poland and Slovakia. Samples were examined for the presence of Cryptosporidium spp. using microscopy and PCR/sequence analysis. Phylogenetic analysis based on the small subunit ribosomal RNA (SSU), actin and 60-kDa glycoprotein (gp60) genes using the maximum likelihood method revealed the presence of Cryptosporidium tyzzeri Ren, Zhao, Zhang, Ning, Jian et al., 2012 (n = 1) and C. andersoni Lindsay, Upton, Owens, Morgan, Mead et Blackburn, 2000 (n = 2) in red foxes, C. canis Fayer, Trout, Xiao, Morgan, Lai et Dubey, 2001 (n = 2) and C. ubiquitum Fayer, Santin et Macarisin, 2010 (n = 2) in grey wolves, and C. galli Pavlásek, 1999 in brown bears (n = 1) and red foxes (n = 1). Subtyping of isolates of C. ubiquitum and C. tyzzeri based on sequence analysis of gp60 showed that they belong to the XIId and IXa families, respectively. The presence of specific DNA of C. tyzzeri, C. andersoni and C. galli, which primarily infect the prey of carnivores, is probably the result of their passage through the gastrointestinal tract of the carnivores. Finding C. ubiquitum XIId in wolves may mean broadening the host spectrum of this subtype, but it remains possible this is the result of infected prey passing through the wolf – in this case deer, which is a common host of this parasite. The dog genotype of C. canis was reported for the first time in wolves.

Keywords: PCR, carnivores, genotyping, SSU, gp60, microscopy, Czech Republic, Poland, Slovakia

Cryptosporidium Tyzzer, 1910 is a genus of single-celled parasites that infect the gastrointestinal and respiratory tracts of a diverse range of vertebrate hosts (Fayer 2010, Ryan 2010, Kváč et al. 2014). Infections can result in the diarrhoeal disease, cryptosporidiosis, which can be chronic and even fatal in the absence of a competent immune response; however, no clinical signs are present in many wild animals (Kváč et al. 2014). Early efforts to detect infections with species of Cryptosporidium were based on the description of oocyst morphology, the development of stages in epithelial scratches, or the identification of surface antigen or specific antibodies (Nichols et al. 1991, Nina et al. 1992, Ogunkolade et al. 1993). Nevertheless, these methods lacked the resolution necessary to differentiate morphologically identical, closely related species (Ryan and Xiao 2014).

Due to recent progress in molecular diagnostic techniques, our knowledge of the diversity within Cryptosporidium has markedly increased, with a total of 45 species recognised as well as a similar number of genotypes having been documented to date (Ryan and Xiao 2014, Holubová et al. 2020). Whereas some groups of hosts – mainly humans, livestock and pets – are studied intensively, other host groups, including wild carnivores, have so far remained neglected and we know relatively little about the occurrence and diversity of Cryptosporidium spp. in these groups (Kváč et al. 2014, Robertson et al. 2014).
Several studies reporting the presence of Cryptosporidium spp. in wild wolves, coyotes, foxes, or bears have been published, but most of these works lack genotyping data (for more detail see Table 1). Given the limited scope and number of studies published so far, the present account aimed to describe the occurrence and genetic diversity of Cryptosporidium spp. in wild foxes, wolves, jackals, and bears across the Czech Republic, Poland, and Slovakia.

MATERIALS AND METHODS

In 2015–2018, faecal samples from wild grey wolves (Canis lupus Linnaeus), golden jackals (Canis aureus Linnaeus), red foxes (Vulpes vulpes [Linnaeus]), and brown bears (Ursus arctos Linnaeus) were collected in the Czech Republic, Poland and Slovakia. Faecal samples from foxes were collected from the rectum of animals shot during the hunting season. Wolves, jackals and bears were tracked and their faeces were collected from the ground on the trails or around the lair. The samples were collected in various territories to avoid repeated sampling of the same animals, but it cannot be ruled out that some wolf, jackal or bear was examined repeatedly. Each sample was placed into a separate airtight sterilised container labelled with the animal ID, kept at 4–8°C without fixative, and delivered to the laboratory for parasitological and molecular examination. Faecal consistency (loose if it took the form of the container and solid if it maintained its original shape) was noted at the time of sampling.

Presence of oocysts of Cryptosporidium spp. in faecal samples was screened using a light microscope (Olympus IX50, Olympus, Tokyo, Japan) following modified Sheather’s sugar flotation method (Eckert et al. 1995) and aniline-carbol-methyl violet staining (Miláček and Vitovec 1985). Total DNA was extracted from 0.2 g of each faecal sample using the Exgene Stool SV Minikit (GeneAll, Seoul, Korea), which was preceded by homogenisation of the sample by glass beads as previously reported (Sak et al. 2008). Nested PCR protocols were used to amplify a partial region of the small subunit ribosomal RNA (SSU) (Jiang et al. 2005), the Q-INS-I algorithm (Kváč et al. 2012), and PCR (Kváč et al. 2012).

Table 1. Identification of Cryptosporidium Tyzzer, 1910 in wild wolves, coyotes, foxes, and bears worldwide using microscopy\(^{(1)}\), coproantigen test\(^{(2)}\), and PCR\(^{(3)}\).

<table>
<thead>
<tr>
<th>Host (common name)</th>
<th>Country</th>
<th>Cryptosporidium taxa</th>
<th>No. of positive examined</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canis lupus (grey wolf)</td>
<td>Canada</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>26/1558</td>
<td>Bryan et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>Canada</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>7/601</td>
<td>Stönen et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Poland</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>7/601</td>
<td>Klok et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>Poland</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>28/51</td>
<td>Paziak et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Croatia</td>
<td>Cryptosporidium sp.</td>
<td>5/14</td>
<td>Paziak et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Croatia</td>
<td>Cryptosporidium sp.</td>
<td>8/400</td>
<td>Paziak et al. (2007)</td>
</tr>
<tr>
<td>Canis latrans (coyote)</td>
<td>USA</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>5/22</td>
<td>Trout et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>1/22</td>
<td>Trout et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>Slovakia</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>4/18</td>
<td>Oates et al. (2012)</td>
</tr>
<tr>
<td>Vulpes vulpes (red fox)</td>
<td>Ireland</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>24/62</td>
<td>Ravaszová et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>2/464</td>
<td>Nagano et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Norway</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>22/184</td>
<td>Sturdee et al. (1999)</td>
</tr>
<tr>
<td></td>
<td>Iran</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>2/269</td>
<td>Hannes et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>2/62</td>
<td>Razmjo et al. (2014)</td>
</tr>
<tr>
<td>Vulpes sp.</td>
<td>USA</td>
<td>Cryptosporidium sp.</td>
<td>4/56</td>
<td>Shannon et al. (2013)</td>
</tr>
<tr>
<td>Vulpes lagopus (arctic fox)</td>
<td>Canada</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>9/95</td>
<td>Elmore et al. (2013)</td>
</tr>
<tr>
<td>Urocyon cinereoargenteus (grey fox)</td>
<td>USA</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>3/157</td>
<td>Davidson et al. (1992)</td>
</tr>
<tr>
<td>Ursus arctos (brown bear)</td>
<td>Slovenia</td>
<td>Cryptosporidium sp.(^{(1)})</td>
<td>35/63</td>
<td>Ravaszová et al. (2012)</td>
</tr>
<tr>
<td>Ursus americanus (American black bear)</td>
<td>USA</td>
<td>Cryptosporidium sp.</td>
<td>1/1</td>
<td>Xiao et al. (2014)</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Presence of oocysts of Cryptosporidium spp. in faecal samples was screened using a light microscope (Olympus IX50, Olympus, Tokyo, Japan) following modified Sheather’s sugar flotation method (Eckert et al. 1995) and aniline-carbol-methyl violet staining (Miláček and Vitovec 1985). Total DNA was extracted from 0.2 g of each faecal sample using the Exgene Stool SV Minikit (GeneAll, Seoul, Korea), which was preceded by homogenisation of the sample by glass beads as previously reported (Sak et al. 2008). Nested PCR protocols were used to amplify a partial region of the small subunit ribosomal RNA (SSU) (Jiang et al. 2005), the Q-INS-I algorithm (Kváč et al. 2012), and PCR (Kváč et al. 2012).
Table 2. Diversity of species of Cryptosporidium Tyzzer, 1910 in faecal samples of red foxes (Vulpes vulpes [Linnaeus]), grey wolves (Canis lupus Linnaeus), golden jackals (Canis aureus Linnaeus), and brown bears (Ursus arctos Linnaeus) detected by microscopy (MIC) and PCR analysis of the small subunit ribosomal RNA (SSU), actin, and 60 kDa glycoprotein (gp60) genes in the Czech Republic (CZE), Poland (POL), and Slovakia (SVK).

<table>
<thead>
<tr>
<th>Host</th>
<th>Country</th>
<th>Number of screened/MIC/PCR positive specimens</th>
<th>Animal ID</th>
<th>Molecular characterisation of Cryptosporidium spp.</th>
<th>SSU</th>
<th>actin</th>
<th>gp60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulpes vulpes (Linnaeus) (red fox)</td>
<td>CZE</td>
<td>58/0/1</td>
<td>13950</td>
<td>C. tyzzeri</td>
<td>C. tyzzeri</td>
<td>IxA8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POL</td>
<td>74/0/2</td>
<td>17238</td>
<td>C. andersoni</td>
<td>C. andersoni</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVK</td>
<td>47/0/1</td>
<td>13517</td>
<td>C. galli</td>
<td>C. galli</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>subtotal</td>
<td>179/0/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canis lupus Linnaeus (grey wolf)</td>
<td>CZE</td>
<td>17/0/1</td>
<td>17601</td>
<td>C. ubiquitum</td>
<td>C. ubiquitum</td>
<td>XIId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVK</td>
<td>83/0/3</td>
<td>29819</td>
<td>C. canis dog genotype</td>
<td>C. canis dog genotype</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subtotal</td>
<td>100/0/4</td>
<td>31129</td>
<td>C. ubiquitum</td>
<td>C. ubiquitum</td>
<td>XIId</td>
<td></td>
</tr>
<tr>
<td>Canis aureus (Linnaeus) (golden jackal)</td>
<td>CZE</td>
<td>3/0/0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVK</td>
<td>8/0/0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>subtotal</td>
<td>11/0/0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursus arctos Linnaeus (brown bear)</td>
<td>POL</td>
<td>15/0/0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVK</td>
<td>48/0/1</td>
<td>24444</td>
<td>C. galli</td>
<td>C. galli</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>subtotal</td>
<td>63/0/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phylogenetic trees were inferred by the maximum likelihood (ML) method, with the substitution model that best fit the alignment selected using Bayesian information criterion in the MEGA7 software. Bootstrap support for branching was based on 1,000 replications. Obtained phylogenies were edited for style using CorelDrawX7. Sequences have been deposited in GenBank under the accession numbers MT810803–MT810811 and MT822822–MT822833.

RESULTS

A total of 353 faecal samples of red foxes (179), grey wolves (100), golden jackals (11), and brown bears (63) from the Czech Republic, Poland and Slovakia were examined by microscopy and molecular analysis for the presence of parasites of the genus Cryptosporidium (Table 2). Whereas microscopic examination did not reveal the presence of Cryptosporidium oocysts in any of the samples, Cryptosporidium-specific DNA was detected in five (2.6%) samples from red foxes, three (3.6%) samples from grey wolves and one (2.3%) sample from brown bear (Table 2). All isolates were successfully sequenced at the SSU and actin genes. ML trees constructed from the alignments of the 17S (C. galli) gp60 sequences of 1,000 replications. Obtained phylograms were edited for style using MEGA7 software. Bootstrap support for branching was based on the variants A1 (JQ073406), differing from the variants A2 (JQ073388) and A3 (JQ073414; data not shown). The isolates of C. canis shared 100% identity with the C. canis dog genotype (EU754837) and differed from the C. canis fox and coyote genotypes (Fig. 2). Isolates of C. andersoni, C. ubiquitum and C. galli were identical to the previously reported sequences (Fig. 2).

The gp60 gene was successfully amplified and sequenced only from samples positive for C. ubiquitum and C. tyzzeri. Sequences of C. ubiquitum were identical to C. ubiquitum subtype family XIId (JX412922) and C. tyzzeri sequence clustered together with the C. tyzzeri subtype family IxA (Fig. 3). On the basis of the nomenclature for gp60 subtypes (Sulaiman et al. 2005), we detected subtype IxA8. No loose consistency of faeces was observed in the examined faecal samples.

DISCUSSION

In the present study, the overall prevalence of Cryptosporidium spp. in wild foxes, wolves and bears was low (0.6–4.0%), which is similar to previous reports from Canada, Croatia, Iran, Ireland, Norway, Spain, UK, and USA, where the prevalence ranged from 0.4% to 16% in these hosts (Sturdee et al. 1999, Hannes et al. 2007, Nagano et al. 2007, Stronen et al. 2011, Bryan et al. 2012, Razmjoo et al. 2014, Hermosilla et al. 2017, Barrera et al. 2020). In contrast, a few studies from Poland and Slovakia have reported the prevalence of Cryptosporidium spp. to be higher than 35% in these hosts (Kloch et al. 2005, Paziewska et al. 2007, Ravanova et al. 2012).

Differences in prevalence among studies are often due to differences in infection rate in individual regions and also different methodological approaches. However, the highest prevalence was observed in studies where the oocysts

Folia Parasitologica 2021, 68: 002
were detected by microscopy or immunochromatographic methods, which are less sensitive than PCR. The high prevalence in studies from Poland and Slovakia may be a result of local focal infections in the studied populations.

In this study, we did not detect the presence of oocysts of species of Cryptosporidium in any of the examined faecal samples by microscopic methods, although subsequent molecular analyses did reveal their presence. These findings are consistent with results from experimental and field studies performed on a variety of wildlife (Ježková et al. 2016, Čondlová et al. 2018, Kváč et al. 2018). Although cryptosporidiosis is often associated with intestinal disease, similar to previous studies, we did not find any relationship between the occurrence of Cryptosporidium and clinical cryptosporidiosis in wild carnivores (e.g., Sturdee et al. 1999, Zhou et al. 2004, Barrera et al. 2020).

Most of species and genotypes of Cryptosporidium are host-specific (Kváč et al. 2014, Ryan and Xiao 2014). To date, only two studies have genotyped Cryptosporidia in wild bears. Duncan et al. (1999) detected Cryptosporidium parvum Tyzzer, 1912 in tissue sections from the small intestine of a dead black bear cub and Xiao et al. (2000) described the Cryptosporidium bear genotype in a black bear. Canids are considered to be specific hosts of Cryptosporidium canis with distinguishable fox, dog and coyote genotypes (Morgan et al. 2000). Whereas fox and coyote genotypes of C. canis have been previously found exclusively in foxes and coyotes, respectively, the C. canis dog genotype has been previously described in dogs, foxes and...
minks (Morgan et al. 2000, Zhou et al. 2004, Trout et al. 2006). In the present study, it was found in wolves for the first time. The dog genotype has seemingly a broader host specificity than the other genotypes of *C. canis*, but this may not be true due to the small number of studies.

Most studies of carnivore hosts, including this one, have described the presence of *Cryptosporidium* spp. that are host-specific for animals other than carnivores. The presence of *Cryptosporidium tyszneri* and *Cryptosporidium muris* Tyszzer, 1907 in the faeces of a red fox and coyotes in this study and that by Trout et al. (2006), respectively, is probably the result of the transfer of these parasites from prey species through the digestive tract. Likewise, the presence of the *Cryptosporidium* muskrat genotype I (a genotype specific for small rodents) in fox faeces in the study by Zhou et al. (2004) is probably the result of the mechanical passage of oocysts that originated from infected prey. Rodents, which are the typical hosts of these species of *Cryptosporidium* are common prey of foxes and coyotes (Sturdev et al. 1999). Similarly, the presence of specific DNA of *Cryptosporidium suis* Ryan, Monis, Enemar, Sulaiman, Read et al., 2004 in fox faeces in the study by Barrera et al. (2020) and *C. galli* in fox and bear faeces in the present study is most likely the result of consuming the carcasses of a wild boar and a bird, as these are the typical hosts of these parasites (*C. suis* and *C. galli*, respectively) (Němejc et al. 2012, Nakamura and Meireles 2015). *Cryptosporidium andersoni* is widely considered a cattle-specific parasite (Lindsay et al. 2000), but has also been found in camels, sheep, goats, various rodents, and non-human primates (Kváč et al. 2016). The presence of *C. andersoni* in the faeces of two foxes shot on a farm with beef cattle can be considered a transfer of the parasite from a contaminated environment. Mechanical passage of non-host-specific species and genotypes of *Cryptosporidium* has been described in the past in a variety of mammals, birds and reptiles (Crawshaw and Mehren 1987, Gračzyk et al. 1996, Xiao et al. 2004, Němejc et al. 2013).

Fig. 2. Molecular phylogenetic tree of *Cryptosporidium* spp. detected in wild carnivores in this study (highlighted) and other *Cryptosporidium* available in GenBank using a Maximum Likelihood analysis of partial sequences of the actin gene. The evolutionary history was inferred based on the General Time Reversible model. A discrete Gamma distribution was used to model evolutionary rate differences among sites. The tree with the highest log likelihood (-5,595.23) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches (1,000 replicates). Bootstrap values for the nodes with more than 50% support are shown. The branch length scale bar indicates the number of substitutions per site. Sequences from this study are identified by an isolate number (e.g., 13517), host species and region (CZE for the Czech Republic, POL for Poland, and SVK for Slovakia). The GenBank accession number for each sequence is mentioned in square brackets. The sequence of *Eimeria maxima* [XM013478337] was used as an outgroup.
Unlike the above-mentioned Cryptosporidium spp., C. ubiquitum is characterised by broad host specificity. Li et al. (2014) originally suggested that C. ubiquitum gp60 subtype families have different host specificity: subtype XIIa is specific to ruminants and subtype families XIIb–XIId to rodents. However, subtype XIIa has been detected in American minks (Mustela vison Schrebe) and long-tailed chinchillas (Chinchilla lanigera [Molina]) (Kellnerová et al. 2017). Subtype XIId, which was detected in grey wolves in the present study, was identical to those previously found in red deer (Cervus elaphus Linnaeus), raccoon (Procyon lotor [Linnaeus]), and crab-eating macaque (Macaca fascicularis [Raffles]) (Li et al. 2014, Kotková et al. 2016, Chen et al. 2019). This suggests that the C. ubiquitum subtype XIId has a broader host range than previously reported; yet, the possibility cannot be entirely ruled out that it was only passing through the wolf after it ate an infected deer.

In conclusion, the results of the present and previous studies show that the use of molecular techniques is very sensitive, enabling even a very small amount of specific DNA to be detected in faecal samples (Lindergard et al. 2003). As experimental studies have shown, the presence of specific DNA without detectable oocysts in the faeces can either indicate active but low intensity infection (Ježková et al. 2016, Kváč et al. 2018), or the passage of oocysts through the gastrointestinal tract (Xiao et al. 2004). However, distinguishing between active infection and the passage of cysts using PCR methods is impossible. Host specificity of the parasite, food preferences of the host and the environment in which the host lives should be used as helpful indicators in deciding between passage and active infection.
Acknowledgements. We thank the gamekeepers and the staff of the Laboratory of Veterinary and Medical Protistology for their assistance in sample collection during this study. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (project No. LTAUSA171165), by the Grant Agency of the University of South Bohemia (project No. 028/2019/Z), and by the National Natural Science Foundation of China (project No. 31820103014).

REFERENCES

