Folia Parasitologica 72:019 (2025) | DOI: 10.14411/fp.2025.019

Marginal cytokine modulation by Schistosoma mansoni soluble egg antigen in SARS-CoV-2-infected K18-hACE2 mice

Yi Mu1, 9, Kexin Yan ORCID...2, 9, Donald P. McManus ORCID...1, 10, Wilson Nguyen ORCID...2, Daniel J. Rawle ORCID...2, Jason A. Roberts ORCID...3, 4, 5, 6, Malcolm K. Jones ORCID...1, 7, Pengfei Cai ORCID...1, 8
1 Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia;
2 Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia;
3 University of Queensland Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia;
4 Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia;
5 Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia;
6 Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
7 School of Veterinary Science, University of Queensland, Brisbane, Australia;
8 School of Biomedical Sciences, University of Queensland, Brisbane, Australia;
9 These authors contributed equally to this work.
10 Deceased

Herein, we explore the potential influence of Schistosoma mansoni Sambon, 1907 soluble egg antigen (SmSEA) on the immunopathology of COVID-19 in K18-hACE2 mice infected with an Omicron BA.5 isolate of SARS-CoV-2. SmSEA treatment was delivered in a single dose by intraperitoneal injection, shortly after intrapulmonary inoculation of SARS-CoV-2. RNA-seq identified 36 differentially expressed genes in the spleens of virus-infected mice treated with SmSEA vs. PBS on day 5 post infection. Ingenuity Pathway Analysis of these genes suggested marginal modulation of cytokine responses, with upregulation of the IL-10 and IL-4 signatures and downregulation of the IFNγ signature. However, cytokine responses and histopathology in the lungs were largely unaffected. Future work will require purification of active helminth compounds and dosing and scheduling optimisation.

Keywords: COVID-19; severe acute respiratory syndrome coronavirus 2; schistosome; helminth-derived antigens; therapeutic immunomodulators; helminth therapy

Received: February 3, 2025; Revised: March 15, 2025; Accepted: April 10, 2025; Published online: June 16, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Mu, Y., Yan, K., McManus, D.P., Nguyen, W., Rawle, D.J., Roberts, J.A., Jones, M.K., & Cai, P. (2025). Marginal cytokine modulation by Schistosoma mansoni soluble egg antigen in SARS-CoV-2-infected K18-hACE2 mice. Folia Parasitologica72, Article 2025.019. https://doi.org/10.14411/fp.2025.019
Download citation

Attachments

Download fileFP_072_019_19_Suppl.pdf

File size: 417.61 kB

References

  1. Adjobimey T., Meyer J., Terkes V., Parcina M., Hoerauf A. 2022: Helminth antigens differentially modulate the activation of CD4(+) and CD8(+) T lymphocytes of convalescent COVID-19 patients in vitro. BMC Med. 20: 241. Go to original source... Go to PubMed...
  2. Alghanmi M., Minshawi F., Altorki T.A., Zawawi A., Alsaady I., Naser A.Y., Alwafi H., Alsulami S.M., Azhari A.A., Hashem A.M., Alhabbab R. 2024: Helminth-derived proteins as immune system regulators: a systematic review of their promise in alleviating colitis. BMC Immunol. 25: 21. Go to original source... Go to PubMed...
  3. Bishop C.R., Dumenil T., Rawle D.J., Le T.T., Yan K., Tang B., Hartel G., Suhrbier A. 2022: Mouse models of COVID-19 recapitulate inflammatory pathways rather than gene expression. PLoS Pathog. 18: e1010867. Go to original source... Go to PubMed...
  4. Bishop C.R., Yan K., Nguyen W., Rawle D.J., Tang B., Larcher T., Suhrbier A. 2024: Microplastics dysregulate innate immunity in the SARS-CoV-2 infected lung. Front. Immunol. 15: 1382655. Go to original source... Go to PubMed...
  5. Buitrago G., Pickering D., Ruscher R., Cobos Caceres C., Jones L., Cooper M., Van Waardenberg A., Ryan S., Miles K., Field M., Dredge K., Daly N.L., Giacomin P.R., Loukas A. 2021: A netrin domain-containing protein secreted by the human hookworm Necator americanus protects against CD4 T cell transfer colitis. Transl. Res. 232: 88-102. Go to original source... Go to PubMed...
  6. Cai P., Mu Y., McManus D.P. 2022: The fight against severe COVID-19: can parasitic worms contribute? Front. Immunol. 13: 849465. Go to original source... Go to PubMed...
  7. Cao Z., Wang J., Liu X., Liu Y., Li F., Liu M., Chiu S., Jin X. 2024: Helminth alleviates COVID-19-related cytokine storm in an IL-9-dependent way. mBio 15: e00905-00924. Go to original source... Go to PubMed...
  8. Chen Y., Lun A.T., Smyth G.K. 2016: From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 5: 1438. Go to original source...
  9. Costain A.H., MacDonald A.S., Smits H.H. 2018: Schistosome egg migration: mechanisms, pathogenesis and host immune responses. Front. Immunol. 9: 3042. Go to original source... Go to PubMed...
  10. Dharra R., Kumar Sharma A., Datta S. 2023: Emerging aspects of cytokine storm in COVID-19: the role of proinflammatory cytokines and therapeutic prospects. Cytokine 169: 156287. Go to original source... Go to PubMed...
  11. Dong D., Du Y., Fei X., Yang H., Li X., Yang X., Ma J., Huang S., Ma Z., Zheng J., Chan D.W., Shi L., Li Y., Irving A.T., Yuan X., Liu X., Ni P., Hu Y., Meng G., Peng Y., Sadler A., Xu D. 2023: Inflammasome activity is controlled by ZBTB16-dependent SUMOylation of ASC. Nat. Commun. 14: 8465. Go to original source... Go to PubMed...
  12. Duan T., Xing C., Chu J., Deng X., Du Y., Liu X., Hu Y., Qian C., Yin B., Wang H.Y., Wang R.-F. 2024: ACE2-dependent and -independent SARS-CoV-2 entries dictate viral replication and inflammatory response during infection. Nat. Cell. Biol. 26: 628-644. Go to original source... Go to PubMed...
  13. Dumenil T., Le T.T., Rawle D.J., Yan K., Tang B., Nguyen W., Bishop C., Suhrbier A. 2023: Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. Sci. Total Environ. 859: 160163. Go to original source... Go to PubMed...
  14. Fogarty C.E., Zhao M., McManus D.P., Duke M.G., Cummins S.F., Wang T. 2019: Comparative study of excretory-secretory proteins released by Schistosoma mansoni-resistant, susceptible and naive Biomphalaria glabrata. Parasit. Vectors 12: 452. Go to original source... Go to PubMed...
  15. Girgis N.M., Gundra U.M., Loke P. 2013: Immune regulation during helminth infections. PLoS Pathog. 9: e1003250. Go to original source... Go to PubMed...
  16. Haeberlein S., Obieglo K., Ozir-Fazalalikhan A., Chayé M.A.M., Veninga H., van der Vlugt L.E.P.M., Voskamp A., Boon L., den Haan J.M.M., Westerhof L.B., Wilbers R.H.P., Schots A., Schramm G., Hokke C.H., Smits H.H. 2017: Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells. PLoS Pathog. 13: e1006539. Go to original source... Go to PubMed...
  17. Hotez P.J., Brindley P.J., Bethony J.M., King C.H., Pearce E.J., Jacobson J. 2008: Helminth infections: the great neglected tropical diseases. J. Clin. Invest. 118: 1311-1321. Go to original source... Go to PubMed...
  18. Janssen L., Silva Santos G.L., Muller H.S., Vieira A.R.A., De Camps T.A., De Paulo Martins V. 2016. Schistosome-derived molecules as modulating actors of the immune system and promising candidates to treat autoimmune and inflammatory diseases. J. Immunol. Res. 2016: 5267485. Go to original source... Go to PubMed...
  19. Jozefowski S., Marcinkiewicz J. 2010: Aggregates of denatured proteins stimulate nitric oxide and superoxide production in macrophages. Inflamm. Res. 59: 277-289. Go to original source... Go to PubMed...
  20. Kanse S.M., Liang O., Schubert U., Haas H., Preissner K.T., Doenhoff M.J., Dennis R.D. 2005: Characterisation and partial purification of Schistosoma mansoni egg-derived pro-angiogenic factor. Mol. Biochem. Parasitol. 144: 76-85. Go to original source... Go to PubMed...
  21. Li B., Dewey C.N. 2011: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 323. Go to original source... Go to PubMed...
  22. Loeffler D.A., Lundy S.K., Singh K.P., Gerard H.C., Hudson A.P., Boros D.L. 2002: Soluble egg antigens from Schistosoma mansoni induce angiogenesis-related processes by up-regulating vascular endothelial growth factor in human endothelial cells. J. Infect. Dis. 185: 1650-1656. Go to original source... Go to PubMed...
  23. Madureira G., Soares R. 2023: The misunderstood link between SARS-CoV-2 and angiogenesis. A narrative review. Pulmonology 29: 323-331. Go to original source... Go to PubMed...
  24. Mohammed E.S., Nakamura R., Kalenda Y.D.J., Deloer S., Moriyasu T., Tanaka M., Fujii Y., Kaneko S., Hirayama K., Ibrahim A.I., El-Seify M.A., Metwally A.M., Hamano S. 2020: Dynamics of serological responses to defined recombinant proteins during Schistosoma mansoni infection in mice before and after the treatment with praziquantel. PLoS Negl. Trop. Dis. 14: e0008518. Go to original source... Go to PubMed...
  25. Mu Y., McManus D.P., Hou N., Cai P. 2021: Schistosome infection and schistosome-derived products as modulators for the prevention and alleviation of immunological disorders. Front. Immunol. 12: 619776. Go to original source... Go to PubMed...
  26. Oyesola O.O., Hilligan K.L., Namasivayam S., Howard N., Clancy C.S., Zhao M., Oland S.D., Kiwanuka K.N., Garza N.L., Lafont B.A.P., Johnson R.F., Mayer-Barber K.D., Sher A., Loke P. 2023: Exposure to lung-migrating helminth protects against murine SARS-CoV-2 infection through macrophage-dependent T cell activation. Sci. Immunol. 8: eadf8161. Go to original source...
  27. Qudus M.S., Tian M., Sirajuddin S., Liu S., Afaq U., Wali M., Liu J., Pan P., Luo Z., Zhang Q., Yang G., Wan P., Li Y., Wu J. 2023: The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J. Med. Virol. 95: e28751. Go to original source... Go to PubMed...
  28. Rawle D.J., Le T.T., Dumenil T., Yan K., Tang B., Nguyen W., Watterson D., Modhiran N., Hobson-Peters J., Bishop C., Suhrbier A. 2021: ACE2-lentiviral transduction enables mouse SARS-CoV-2 infection and mapping of receptor interactions. PLoS Pathog. 17: e1009723. Go to original source... Go to PubMed...
  29. Ryan S.M., Ruscher R., Johnston W.A., Pickering D.A., Kennedy M.W., Smith B.O., Jones L., Buitrago G., Field M.A., Esterman A.J., McHugh C.P., Browne D.J., Cooper M.M., Ryan R.Y.M., Doolan D.L., Engwerda C.R., Miles K., Mitreva M., Croese J., Rahman T., Alexandrov K., Giacomin P.R., Loukas A. 2022: Novel antiinflammatory biologics shaped by parasite-host coevolution. Proc. Natl. Acad. Sci. U.S.A. 119: e2202795119. Go to original source... Go to PubMed...
  30. Serrat J., Frances-Gomez C., Becerro-Recio D., Gonzalez-Miguel J., Geller R., Siles-Lucas M. 2023: Antigens from the helminth Fasciola hepatica exert antiviral effects against SARS-CoV-2 in vitro. Int. J. Mol. Sci. 24: 11597. Go to original source... Go to PubMed...
  31. Siles-Lucas M., Gonzalez-Miguel J., Geller R., Sanjuan R., Perez-Arevalo J., Martinez-Moreno A. 2021: Potential influence of helminth molecules on COVID-19 pathology. Trends Parasitol. 37: 11-14. Go to original source... Go to PubMed...
  32. Stewart R., Yan K., Ellis S.A., Bishop C.R., Dumenil T., Tang B., Nguyen W., Larcher T., Parry R., Sng J.J., Khromykh A.A., Sullivan R.K.P., Lor M., Meunier F.A., Rawle D.J., Suhrbier A. 2023: SARS-CoV-2 omicron BA.5 and XBB variants have increased neurotropic potential over BA.1 in K18-hACE2 mice and human brain organoids. Front. Microbiol. 14: 1320856. Go to original source... Go to PubMed...
  33. Wolday D., Gebrecherkos T., Arefaine Z.G., Kiros Y.K., Gebreegzabher A., Tasew G., Abdulkader M., Abraha H.E., Desta A.A., Hailu A., Tollera G., Abdella S., Tesema M., Abate E., Endarge K.L., Hundie T.G., Miteku F.K., Urban B.C., Schallig H., Harris V.C., de Wit T.F.R. 2021: Effect of co-infection with intestinal parasites on COVID-19 severity: a prospective observational cohort study. EClinicalMedicine 39: 101054. Go to original source... Go to PubMed...
  34. Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., Fu X., Liu S., Bo X., Yu G. 2021: clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2: 100141. Go to original source... Go to PubMed...
  35. Yan K., Dumenil T., Tang B., Le T.T., Bishop C.R., Suhrbier A., Rawle D.J. 2022: Evolution of ACE2-independent SARS-CoV-2 infection and mouse adaption after passage in cells expressing human and mouse ACE2. Virus Evol. 8: veac063. Go to original source...
  36. Yoon T.J., Kim J.Y., Kim H., Hong C., Lee H., Lee C.K., Lee K.H., Hong S., Park S.H. 2008: Anti-tumor immunostimulatory effect of heat-killed tumor cells. Exp. Mol. Med. 40: 130-144. Go to original source... Go to PubMed...